Memory Effects Based on Dopant Atoms in Nano-FETs

Article Preview

Abstract:

Transistors have been significantly downsized over the past decades, reaching channel dimensions of around 100 nm. In nanoscale, quantum effects start to play a key role in device operation, allowing the development of applications based on new physics. In silicon nanodevices, for instance, the device downsizing is associated with a reduction of the number of impurities (dopants) incorporated in the channel. Dopants can play an active role in device operation, mediating the electron transport between source and drain. Here, we present a new device concept of a memory based on the interaction between dopants in nanoscale field-effect transistors. As a basis for memory operation, we show experimental results of single-electron charging in individual dopants monitored by a single-electron current flowing through a dopant array.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-125

Citation:

Online since:

April 2011

Export:

Price:

[1] B. E. Kane: Nature, Vol. 393 (1998), p.133.

Google Scholar

[2] L. C. L. Hollenberg, A. S. Dzurak, C. Wellard, A. R. Hamilton, D. J. Reilly, G. J. Milburn, and R. G. Clark: Phys. Rev. B, Vol. 69 (2004), p.113301.

Google Scholar

[3] H. Sellier, G. P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, and S. Biesemans: Phys. Rev. Lett., Vol. 97 (2006), p.206805.

DOI: 10.1103/physrevlett.97.206805

Google Scholar

[4] G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge: Nature Physics, Vol. 4 (2008), p.656.

DOI: 10.1038/nphys994

Google Scholar

[5] Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, and Y. Takahashi: Appl. Phys. Lett., Vol. 90 (2007), p.102106.

DOI: 10.1063/1.2679254

Google Scholar

[6] M. Tabe, D. Moraru, M. Ligowski, M. Anwar, R. Jablonski, Y. Ono, and T. Mizuno: Phys. Rev. Lett., Vol. 105 (2010), p.016803.

DOI: 10.1103/physrevlett.105.016803

Google Scholar

[7] M. Ligowski, D. Moraru, M. Anwar, T. Mizuno, R. Jablonski, and M. Tabe: Appl. Phys. Lett., Vol. 93 (2008), p.142101.

DOI: 10.1063/1.2992202

Google Scholar

[8] M. Tabe, D. Moraru, M. Ligowski, M. Anwar, K. Yokoi, R. Jablonski, and T. Mizuno: Thin Solid Films, Vol. 518 (2010), p. S38.

DOI: 10.1016/j.tsf.2009.10.051

Google Scholar

[9] D. Moraru, Y. Ono, H. Inokawa, and M. Tabe: Phys. Rev. B, Vol. 76 (2007), p.075332.

Google Scholar

[10] K. Yokoi, D. Moraru, M. Ligowski, and M. Tabe: Jpn. J. Appl. Phys., Vol. 48 (2009), p.024503.

Google Scholar

[11] D. Moraru, M. Ligowski, K. Yokoi, T. Mizuno, and M. Tabe: Appl. Phys. Express, Vol. 2 (2009), p.071201.

DOI: 10.1143/apex.2.071201

Google Scholar

[12] K. Yokoi, D. Moraru, T. Mizuno, and M. Tabe: J. Appl. Phys., Vol. 108 (2010), p.053710.

Google Scholar

[13] E. Hamid, D. Moraru, J. C. Tarido, S. Miki, T. Mizuno, and M. Tabe: Appl. Phys. Lett., Vol. 97 (2010), p.262101.

DOI: 10.1063/1.3530442

Google Scholar

[14] G. J. Evans, H. Mizuta, and H. Ahmed: Jpn. J. Appl. Phys., Vol. 40 (2001), p.5837.

Google Scholar

[15] D. V. Averin and K. K. Likharev: in Single charge tunneling, ed. H. Grabert and M. Devoret (Plenum, New York, 1992), p.311.

Google Scholar

[16] M. J. Calderon, B. Koiller, and S. Das Sarma: Phys. Rev. B, Vol. 75 (2007), p.125311.

Google Scholar