Skip to main content

Chemokines and Cancer

  • Chapter
Book cover Cytokines and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frederick, M.J. and G.L. Clayman, Chemokines in cancer. Expert Rev Mol Med, 2001. 2001: p. 1–18.

    Article  PubMed  CAS  Google Scholar 

  2. Wong, M.M. and E.N. Fish, Chemokines: attractive mediators of the immune response. Semin Immunol, 2003. 15(1): p. 5–14.

    Article  PubMed  CAS  Google Scholar 

  3. Bottazzi, B., et al., A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer, 1990. 45(4): p. 795–7.

    PubMed  CAS  Google Scholar 

  4. Bottazzi, B., et al., Regulation of the macrophage content of neoplasms by chemoattractants. Science, 1983. 220(4593): p. 210–2.

    PubMed  CAS  Google Scholar 

  5. Sica, A., et al., Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol, 2000. 164(2): p. 733–8.

    PubMed  CAS  Google Scholar 

  6. Van Damme, J., et al., Structural and functional identification of two human, tumorderived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med, 1992. 176(1): p. 59–65.

    Article  PubMed  Google Scholar 

  7. Amann, B., et al., Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br J Urol, 1998. 82(1): p. 118–21.

    PubMed  CAS  Google Scholar 

  8. Valkovic, T., et al., Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract, 1998. 194(5): p. 335–40.

    PubMed  CAS  Google Scholar 

  9. Nesbit, M., et al., Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol, 2001. 166(11): p. 6483–90.

    PubMed  CAS  Google Scholar 

  10. Azenshtein, E., et al., The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res, 2002. 62(4): p. 1093–102.

    PubMed  CAS  Google Scholar 

  11. Luboshits, G., et al., Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res, 1999. 59(18): p. 4681–7.

    PubMed  CAS  Google Scholar 

  12. Robinson, S.C., et al., A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res, 2003. 63(23): p. 8360–5.

    PubMed  CAS  Google Scholar 

  13. Adler, E.P., et al., A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett, 2003. 90(2–3): p. 187–94.

    Article  PubMed  CAS  Google Scholar 

  14. Mantovani, A., et al., The origin and function of tumor-associated macrophages. Immunol Today, 1992. 13(7): p. 265–70.

    Article  PubMed  CAS  Google Scholar 

  15. Chouaib, S., et al., The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today, 1997. 18(10): p. 493–7.

    Article  PubMed  CAS  Google Scholar 

  16. Sica, A., et al., Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol, 2000. 164(2): p. 762–7.

    PubMed  CAS  Google Scholar 

  17. Gu L, T.S., Homer RM, Tam C, Loda M, Rollins BJ., Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 2000. 404(6776): p. 407–11.

    Article  PubMed  CAS  Google Scholar 

  18. Arvanitakis, L., et al., Human herpes virus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature, 1997. 385(6614): p. 347–50.

    Article  PubMed  CAS  Google Scholar 

  19. Bais, C., et al., G-protein-coupled receptor of Kaposi's sarcoma-associated herpes virus is a viral oncogene and angiogenesis activator. Nature, 1998. 391(6662): p. 86–9.

    Article  PubMed  CAS  Google Scholar 

  20. Yang, T.Y., et al., Transgenic expression of the chemokine receptor encoded by human herpes virus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med, 2000. 191(3): p. 445–54.

    Article  PubMed  CAS  Google Scholar 

  21. Burger, M., et al., Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpes virus-G protein-coupled receptor. J Immunol, 1999. 163(4): p. 2017–22.

    PubMed  CAS  Google Scholar 

  22. Nakano, K., et al., Kaposi's sarcoma-associated herpes virus (KSHV)-encoded vMIP-I and vMIP-II induce signal transduction and chemotaxis in monocytic cells. Arch Virol, 2003. 148(5): p. 871–90.

    Article  PubMed  CAS  Google Scholar 

  23. Uccini, S., et al., In situ study of chemokine and chemokine-receptor expression in Kaposi sarcoma. Am J Dermatopathol, 2003. 25(5): p. 377–83.

    PubMed  Google Scholar 

  24. Xie, K., Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev, 2001. 12(4): p. 375–91.

    Article  PubMed  CAS  Google Scholar 

  25. Luan, J., et al., Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol, 1997. 62(5): p. 588–97.

    PubMed  CAS  Google Scholar 

  26. Schadendorf, D., et al., IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol, 1993. 151(5): p. 2667–75.

    PubMed  CAS  Google Scholar 

  27. Moser, B., et al., Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem J, 1993. 294 (Pt 1): p. 285–92.

    PubMed  CAS  Google Scholar 

  28. Norgauer, J., B. Metzner, and I. Schraufstatter, Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol, 1996. 156(3): p. 1132–37.

    PubMed  CAS  Google Scholar 

  29. Payne, A.S. and L.A. Cornelius, The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol, 2002. 118(6): p. 915–22.

    Article  PubMed  CAS  Google Scholar 

  30. Vamey, M.L., et al., Expression of CXCRI and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin Exp Metastasis, 2003. 20(8): p. 723–31.

    Article  Google Scholar 

  31. Ramjeesingh, R., R. Leung, and C.H. Siu, Interleukin-8 secreted by endothelial cells induces chemotaxis of melanoma cells through the chemokine receptor CXCR1. Faseb J, 2003. 17(10): p. 1292–4.

    PubMed  CAS  Google Scholar 

  32. Takamori, H., et al., Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas, 2000. 21(1): p. 52–6.

    Article  PubMed  CAS  Google Scholar 

  33. Shi, Q., et al., Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res, 1999. 5(11): p. 3711–21.

    PubMed  CAS  Google Scholar 

  34. Le, X., et al., Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res, 2000. 20(11): p. 935–46.

    Article  PubMed  CAS  Google Scholar 

  35. Kuwada, Y., et al., Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol, 2003. 22(4): p. 765–71.

    PubMed  CAS  Google Scholar 

  36. Kleeff, J., et al., Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer, 1999. 81(4): p. 650–7.

    Article  PubMed  CAS  Google Scholar 

  37. Scotton, C.J., et al., Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002. 62(20): p. 5930–8.

    PubMed  CAS  Google Scholar 

  38. Moore, B.B., et al., Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol, 1999. 154(5): p. 1503–12.

    PubMed  CAS  Google Scholar 

  39. Eck, M., et al., Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCLI expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol, 2003. 134(3): p. 508–15.

    Article  PubMed  CAS  Google Scholar 

  40. Sehgal, A., et al., Molecular characterization of CXCR-4: a potential brain tumor-associated gene. J Surg Oncol, 1998. 69(4): p. 239–48.

    Article  PubMed  CAS  Google Scholar 

  41. Sehgal, A., et al., CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation ofglioblastoma tumor cells. J Surg Oncol, 1998. 69(2): p. 99–104.

    Article  PubMed  CAS  Google Scholar 

  42. Chan, C.C., et al., Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology, 2003. 110(2): p. 421–6.

    Article  PubMed  Google Scholar 

  43. Floridi, F., et al., Signaling pathways involved in the chemotactic activity of CXCL12 in cultured rat cerebellar neurons and CHPIO neuroepithelioma cells. J Neuroimmunol, 2003. 135(1–2): p. 38–46.

    Article  PubMed  CAS  Google Scholar 

  44. Moller, C., et al., Expression and function of chemokine receptors in human multiple myeloma. Leukemia, 2003. 17(1): p. 203–10.

    Article  PubMed  CAS  Google Scholar 

  45. Sun, Y.X., et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003. 89(3): p. 462–73.

    Article  PubMed  CAS  Google Scholar 

  46. Uchida, D., et al., Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res, 2003. 290(2): p. 289–302.

    Article  PubMed  CAS  Google Scholar 

  47. Zeelenberg, I.S., L. Ruuls-Van Stalle, and E. Roos, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003. 63(13): p. 3833–9.

    PubMed  CAS  Google Scholar 

  48. Koshiba, T., et al., Expression ofstromal cell-derived factor I and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res, 2000. 6(9): p. 3530–5.

    PubMed  CAS  Google Scholar 

  49. Barbero, S., et al., Stromal cell-derived factor alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res, 2003. 63(8): p. 1969–74.

    PubMed  CAS  Google Scholar 

  50. Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): p. 50–6.

    Article  PubMed  CAS  Google Scholar 

  51. Barretina, J., et al., CXCR4 and SDF-1 expression in B-cell chronic lymphocytic leukemia and stage of the disease. Ann Hematol, 2003. 82(8): p. 500–5.

    Article  PubMed  CAS  Google Scholar 

  52. Cardones, A.R., T. Murakami, and S.T. Hwang, CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res, 2003. 63(20): p. 6751–7.

    PubMed  CAS  Google Scholar 

  53. Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992. 258(5089): p. 1798–801.

    PubMed  CAS  Google Scholar 

  54. Strieter, R.M., et al., Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol, 1992. 141(6): p. 1279–84.

    PubMed  CAS  Google Scholar 

  55. Strieter, R.M., et al., The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem, 1995. 270(45): p. 27348–57.

    Article  PubMed  CAS  Google Scholar 

  56. Sgadari, C., et al., Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13791–6.

    Article  PubMed  CAS  Google Scholar 

  57. Belperio, J.A., et al., CXC chemokines in angiogenesis. J Leukoc Biol, 2000. 68(1): p. 1–8.

    PubMed  CAS  Google Scholar 

  58. Angiolillo, A.L., et al., Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med, 1995. 182(1): p. 155–62.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta, S.K., et al., Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 1998. 273(7): p. 4282–7.

    Article  PubMed  CAS  Google Scholar 

  60. Salcedo, R., et al., Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol, 1999. 154(4): p. 1125–35.

    PubMed  CAS  Google Scholar 

  61. Salcedo, R., et al., Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood, 2000. 96(1): p. 34–40.

    PubMed  CAS  Google Scholar 

  62. Addison, C.L., et al., The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 2000. 165(9): p. 5269–77.

    PubMed  CAS  Google Scholar 

  63. Romagnani, P., et al., Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest, 2001. 107(1): p. 53–63.

    PubMed  CAS  Google Scholar 

  64. Bernardini, G., et al., Analysis of the role of chemokines in angiogenesis. J Immunol Methods, 2003. 273(1–2): p. 83–101.

    Article  PubMed  CAS  Google Scholar 

  65. Arenberg, D.A., et al., Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest, 1996. 97(12): p. 2792–802.

    PubMed  CAS  Google Scholar 

  66. Smith, D.R., et al., Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med, 1994. 179(5): p. 1409–15.

    Article  PubMed  CAS  Google Scholar 

  67. Yoneda, J., et al., Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 1998. 90(6): p. 447–54.

    Article  PubMed  CAS  Google Scholar 

  68. Lane, B.R., et al., Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi's sarcoma. J Virol, 2002. 76(22): p. 11570–83.

    Article  PubMed  CAS  Google Scholar 

  69. Arenberg, D.A., et al., The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc Biol, 1997. 62(5): p. 554–62.

    PubMed  CAS  Google Scholar 

  70. Arenberg, D.A., et al., Improved survival in tumor-bearing SCID mice treated with interferon-gamma-inducible protein 10 (IP-10/CXCL 10). Cancer Immunol Immunother, 2001. 50(10): p. 533–8.

    Article  PubMed  CAS  Google Scholar 

  71. Sgadari, C., A.L. Angiolillo, and G. Tosato, Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 1996. 87(9): p. 3877–82.

    PubMed  CAS  Google Scholar 

  72. Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 1997. 151(4): p. 1105–13.

    PubMed  CAS  Google Scholar 

  73. Inoue, K., et al., Frequent administration of angiogenesis inhibitor TNP-470 (AGM-1470) at an optimal biological dose inhibits tumor growth and metastasis of metastatic human transitional cell carcinoma in the urinary bladder. Clin Cancer Res, 2002. 8(7): p. 2389–98.

    PubMed  CAS  Google Scholar 

  74. Bar-Eli, M., Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology, 1999. 67(1): p. 12–8.

    Article  PubMed  CAS  Google Scholar 

  75. Reiland, J., L.T. Furcht, and J.B. McCarthy, CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate, 1999. 41(2): p. 78–88.

    Article  PubMed  CAS  Google Scholar 

  76. Till, K.J., et al., The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002. 99(8): p. 2977–84.

    Article  PubMed  CAS  Google Scholar 

  77. Scotton, C.J., et al., Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res, 2001. 61(13): p. 4961–5.

    PubMed  CAS  Google Scholar 

  78. Youngs, S.J., et al., Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer, 1997. 71(2): p. 257–66.

    Article  PubMed  CAS  Google Scholar 

  79. Burger, M., et al., Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003. 22(50): p. 8093–101.

    Article  PubMed  CAS  Google Scholar 

  80. Oonakahara, K.I., et al., SDF-1{alpha}/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol, 2003.

    Google Scholar 

  81. Fernandis, A.Z., et al., Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene, 2004. 23(1): p. 157–67.

    Article  PubMed  CAS  Google Scholar 

  82. Helbig, G., et al., NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem, 2003. 278(24): p. 21631–8.

    Article  PubMed  CAS  Google Scholar 

  83. Kato, M., et al., Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res, 2003. 5(5): p. R144–50.

    Article  PubMed  CAS  Google Scholar 

  84. Staller, P., et al., Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor pVHL. Nature, 2003. 425(6955): p. 307–11.

    Article  PubMed  CAS  Google Scholar 

  85. Ding, Y., et al., Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 2003. 9(9): p. 3406–12.

    PubMed  CAS  Google Scholar 

  86. Dellacasagrande, J., et al., Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol, 2003. 57(6): p. 534–44.

    Article  PubMed  CAS  Google Scholar 

  87. Yao, L., et al., Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood, 2003. 102(12): p. 3900–5.

    Article  PubMed  CAS  Google Scholar 

  88. De Clercq, E., The bicyclam AMD3100 story. Nat Rev Drug Discov, 2003. 2(7): p. 581–7.

    Article  PubMed  CAS  Google Scholar 

  89. Rubin, J.B., et al., A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13513–8.

    Article  PubMed  CAS  Google Scholar 

  90. Tamamura, H., et al., T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett, 2003. 550(1–3): p. 79–83.

    Article  PubMed  CAS  Google Scholar 

  91. Chen, Y., G. Stamatoyannopoulos, and C.Z. Song, Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res, 2003. 63(16): p. 4801–4.

    PubMed  CAS  Google Scholar 

  92. Filleur, S., et al., SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res, 2003. 63(14): p. 3919–22.

    PubMed  CAS  Google Scholar 

  93. Wiley, H.E., et al., Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst, 2001. 93(21): p. 1638–43.

    Article  PubMed  CAS  Google Scholar 

  94. Bertolini, F., et al., CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res, 2002. 62(11): p. 3106–12.

    PubMed  CAS  Google Scholar 

  95. Robinson, S.C., K.A. Scott, and F.R. Balkwill, Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol, 2002. 32(2): p. 404–12.

    Article  PubMed  CAS  Google Scholar 

  96. Bottazzi, B., et al., Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol, 1992. 148(4): p. 1280–5.

    PubMed  CAS  Google Scholar 

  97. Monti, P., et al., The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res, 2003. 63(21): p. 7451–61.

    PubMed  CAS  Google Scholar 

  98. Braun, S.E., et al., The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol, 2000. 164(8): p. 4025–31.

    PubMed  CAS  Google Scholar 

  99. Fushimi, T., et al., Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest, 2000. 105(10): p. 1383–93.

    Article  PubMed  CAS  Google Scholar 

  100. Hillinger, S., et al., EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model. J Immunol, 2003. 171(12): p. 6457–65.

    PubMed  CAS  Google Scholar 

  101. Lee, J.M., et al., Intratumoral expression of macrophage-derived chemokine induces CD4+ T cell-independent antitumor immunity in mice. J Immunother, 2003. 26(2): p. 117–29.

    Article  PubMed  CAS  Google Scholar 

  102. Guo, J., et al., Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer, 2003. 103(2): p. 212–20.

    Article  PubMed  CAS  Google Scholar 

  103. Lavergne, E., et al., Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res, 2003. 63(21): p. 7468–74.

    PubMed  CAS  Google Scholar 

  104. Ruehlmann, J.M.p., et al., MIG (CXCL9) chemokine gene therapy combines with antibody-cytokine fusion\par protein to suppress growth and dissemination of murine colon carcinoma.\par. Cancer Res\par, 2001. 61\par(23\par): p. 8498–503\par.

    CAS  Google Scholar 

  105. Regulier, E., et al., Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther, 2001. 8(1): p. 45–54.

    Article  PubMed  CAS  Google Scholar 

  106. Giussani, C., et al., Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res, 2003. 63(10): p. 2499–505.

    PubMed  CAS  Google Scholar 

  107. Oliver, V.K., et al., Regulation of the pro-angiogenic microenvironment by carboxyamido-triazole. J Cell Physiol, 2003. 197(1): p. 139–48.

    Article  PubMed  CAS  Google Scholar 

  108. Fujisawa, N., et al., alpha-Chemokine growth factors for adenocarcinomas; a synthetic peptide inhibitor for alpha-chemokines inhibits the growth of adenocarcinoma cell lines. J Cancer Res Clin Oncol, 2000. 126(1): p. 19–26.

    Article  PubMed  CAS  Google Scholar 

  109. Biragyn, A., et al., Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol, 1999. 17(3): p. 253–8.

    Article  PubMed  CAS  Google Scholar 

  110. Rousseau, R.F., et al., Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood, 2003. 101(5): p. 1718–26.

    Article  PubMed  CAS  Google Scholar 

  111. Terando, A., B. Roessler, and J.J. Mule, Chemokine gene modification of human dendritic cell-based tumor vaccines using a recombinant adenoviral vector. Cancer Gene Ther, 2004.

    Google Scholar 

  112. Matsuyoshi, H., et al., Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein: application to antitumor vaccination. J Immunol, 2004. 172(2): p. 776–86.

    PubMed  CAS  Google Scholar 

  113. Ng-Cashin, J., et al., Host absence of CCR5 potentiates dendritic cell vaccination. J Immunol, 2003. 170(8): p. 4201–8.

    PubMed  CAS  Google Scholar 

  114. Hu, J.Y., et al., Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J Gastroenterol, 2002. 8(6): p. 1067–72.

    PubMed  CAS  Google Scholar 

  115. Ladell, K., et al., A combination of plasmid DNAs encoding murine fetal liver kinase 1 extracellular domain, murine interleukin-12, and murine interferon-gamma inducible protein-10 leads to tumor regression and survival in melanoma-bearing mice. J Mol Med, 2003. 81(4): p. 271–8.

    PubMed  CAS  Google Scholar 

  116. Gao, J.Q., et al., Antitumor effect by interleukin-11 receptor alpha-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res, 2003. 63(15): p. 4420–5.

    PubMed  CAS  Google Scholar 

  117. Tsuchiyama, T., et al., Enhanced antitumor effects of a bicistronic adenovirus vector expressing both herpes simplex virus thymidine kinase and monocyte chemoattractant protein-1 against hepatocellular carcinoma. Cancer Gene Ther, 2003. 10(8): p. 647.

    Article  CAS  Google Scholar 

  118. Ueno, T., et al., Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res, 2000. 6(8): p. 3282–9.

    PubMed  CAS  Google Scholar 

  119. Schteingart, D.E., et al., Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome. J Clin Endocrinol Metab, 2001. 86(8): p. 3968–74.

    Article  PubMed  CAS  Google Scholar 

  120. Kershaw, M.H., et al., Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther, 2002. 13(16): p. 1971–80.

    Article  PubMed  CAS  Google Scholar 

  121. Saijo, Y., et al., Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol, 2002. 169(1): p. 469–75.

    PubMed  CAS  Google Scholar 

  122. Moore, B.B., et al., CXC chemokines mechanism of action in regulating tumor angiogenesis. Angiogenesis, 1998. 2(2): p. 123–34.

    PubMed  CAS  Google Scholar 

  123. Lasagni, L., et al., An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med, 2003. 197(11): p. 1537–49.

    Article  PubMed  CAS  Google Scholar 

  124. Li, Y., et al., Suppression of tumor growth by viral vector-mediated gene transfer of N-terminal truncated platelet factor 4. Cancer Biother Radiopharm, 2003. 18(5): p. 829–40.

    Article  PubMed  CAS  Google Scholar 

  125. Van Coillie, E., et al., Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. Am J Pathol, 2001. 159(4): p. 1405–14.

    PubMed  Google Scholar 

  126. Lorena, S.C., et al., Eotaxin expression in oral squamous cell carcinomas with and without tumor associated tissue eosinophilia. Oral Dis, 2003. 9(6): p. 279–83.

    Article  PubMed  CAS  Google Scholar 

  127. Nakayama, T., et al., Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol, 2003. 170(3): p. 1136–40.

    PubMed  CAS  Google Scholar 

  128. Mickanin, C.S., U. Bhatia, and M. Labow, Identification of a novel beta-chemokine, MEC, down-regulated in primary breast tumors. Int J Oncol, 2001. 18(5): p. 939–44.

    PubMed  CAS  Google Scholar 

  129. Chada, S., R. Ramesh, and A.M. Mhashilkar, Cytokine-and chemokine-based gene therapy for cancer. Curr Opin Mol Ther, 2003. 5(5): p. 463–74.

    PubMed  CAS  Google Scholar 

  130. Nomura, T., et al., Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-1 alpha chemokine genes. Int J Cancer, 2001. 91(5): p. 597–606.

    Article  PubMed  CAS  Google Scholar 

  131. Husson, H., et al., CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol, 2002. 119(2): p. 492–5.

    Article  PubMed  CAS  Google Scholar 

  132. Smith, J.R., et al., Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood, 2003. 101(3): p. 815–21.

    Article  PubMed  CAS  Google Scholar 

  133. Ghia, P., et al., Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol, 2002. 32(5): p. 1403–13.

    Article  PubMed  CAS  Google Scholar 

  134. Frederick, M.J., et al., In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol, 2000. 156(6): p. 1937–50.

    PubMed  CAS  Google Scholar 

  135. Hromas, R., et al., Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun, 1999. 255(3): p. 703–6.

    Article  PubMed  CAS  Google Scholar 

  136. Spinetti, G., et al., The chemokine receptor CCR8 mediates rescue from dexamethasone-induced apoptosis via an ERK-dependent pathway. J Leukoc Biol, 2003. 73(1): p. 201–7.

    Article  PubMed  CAS  Google Scholar 

  137. Lentzsch, S., et al., Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood, 2003. 101(9): p. 3568–73.

    Article  PubMed  CAS  Google Scholar 

  138. Mellado, M., et al., A potential immune escape mechanism by melanoma cells through the activation of chemokine-induced T cell death. Curr Biol, 2001. 11(9): p. 691–6.

    Article  PubMed  CAS  Google Scholar 

  139. Crittenden, M., et al., Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res, 2003. 63(17): p. 5505–12.

    PubMed  CAS  Google Scholar 

  140. Nicholas, J., et al., Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med, 1997. 3(3): p. 287–92.

    Article  PubMed  CAS  Google Scholar 

  141. Yi, F., R. Jaffe, and E.V. Prochownik, The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis. Cancer Res, 2003. 63(11): p. 2923–32.

    PubMed  CAS  Google Scholar 

  142. Vande Broek, I., et al., Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1,-2 and-3. Br J Cancer, 2003. 88(6): p. 855–62.

    Article  PubMed  CAS  Google Scholar 

  143. Kleinhans, M., et al., Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T-cell lymphoma. Blood, 2003. 101(4): p. 1487–93.

    Article  PubMed  CAS  Google Scholar 

  144. Salcedo, R., et al., Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol, 2001. 166(12): p. 7571–8.

    PubMed  CAS  Google Scholar 

  145. Maggio, E.M., et al., Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical Hodgkin lymphomas. Int J Cancer, 2002. 99(5): p. 665–72.

    Article  PubMed  CAS  Google Scholar 

  146. Han, I.S., et al., Differentiation of CD34+ cells from human cord blood and murine bone marrow is suppressed by C6 beta-chemokines. Mol Cells, 2003. 15(2): p. 176–80.

    PubMed  CAS  Google Scholar 

  147. Strasly, M., et al., CCL16 activates an angiogenic program in vascular endothelial cells. Blood, 2004. 103(1): p. 40–9

    Article  PubMed  CAS  Google Scholar 

  148. Ferenczi, K., et al., Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol, 2002. 119(6): p. 1405–10.

    Article  PubMed  CAS  Google Scholar 

  149. Schutyser, E., et al., Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem, 2002. 277(27): p. 24584–93.

    Article  PubMed  CAS  Google Scholar 

  150. Struyf, S., et al., PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol, 2003. 163(5): p. 2065–75.

    PubMed  CAS  Google Scholar 

  151. Murakami, T., et al., Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med, 2003. 198(9): p. 1337–47

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Murooka, T.T., Ward, S.E., Fish, E.N. (2005). Chemokines and Cancer. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics