Skip to main content

DNA Replication and Genomic Instability

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 570))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, Y., J. Usukura, and M. Yanagida. 1997. A globular complex formation by Nda1 and the other five members of the MCM protein family in fission yeast. Genes Cells. 2:467–79.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal, B.D., and B.R. Calvi. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature. 430:372–6.

    Article  CAS  PubMed  Google Scholar 

  • Aladjem, M.I., and E. Fanning. 2004. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep. 5:686–91.

    Article  CAS  PubMed  Google Scholar 

  • Aladjem, M.I., M. Groudine, L.L. Brody, E.S. Dieken, R.E. Fournier, G.M. Wahl, and E.M. Epner. 1995. Participation of the human beta-globin locus control region in initiation of DNA replication. Science. 270:815–9.

    CAS  PubMed  Google Scholar 

  • Aladjem, M.I., L.W. Rodewald, C.M. Lin, S. Bowman, D.M. Cimbora, L.L. Brody, E.M. Epner, M. Groudine, and G.M. Wahl. 2002. Replication initiation patterns in the betaglobin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol Cell Biol. 22:442–52.

    Article  CAS  PubMed  Google Scholar 

  • Alexandrow, M.G., and J.L. Hamlin. 2004. Cdc6 chromatin affinity is unaffected by serine-54 phosphorylation, S-phase progression, and overexpression of cyclin A. Mol Cell Biol. 24:1614–27.

    Article  CAS  PubMed  Google Scholar 

  • Aparicio, O.M., A.M. Stout, and S.P. Bell. 1999. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A. 96:9130–5.

    Article  CAS  PubMed  Google Scholar 

  • Aparicio, O.M., D.M. Weinstein, and S.P. Bell. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell. 91:59–69.

    Article  CAS  PubMed  Google Scholar 

  • Araki, H., S.H. Leem, A. Phongdara, and A. Sugino. 1995. Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A. 92:11791–5.

    CAS  PubMed  Google Scholar 

  • Baker, T.A., and A. Kornberg. 1988. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell. 55:113–23.

    Article  CAS  PubMed  Google Scholar 

  • Ballabeni, A., M. Melixetian, R. Zamponi, L. Masiero, F. Marinoni, and K. Helin. 2004. Human Geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J. 23:3122–32.

    Article  CAS  PubMed  Google Scholar 

  • Bell, S.P., and A. Dutta. 2002. DNA replication in eukaryotic cells. Annu Rev Biochem. 71:333–74.

    Article  CAS  PubMed  Google Scholar 

  • Bell, S.P., and B. Stillman. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 357:128–34.

    CAS  PubMed  Google Scholar 

  • Bermejo, R., N. Vilaboa, and C. Cales. 2002. Regulation of CDC6, geminin, and CDT1 in human cells that undergo polyploidization. Mol Biol Cell. 13:3989–4000.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, F., M.E. Rusiniak, K. Sharma, X. Sun, I. Todorov, M.M. Castellano, C. Gutierrez, H. Baumann, and W.C. Burhans. 2002. Targeted destruction of DNA replication protein Cdc6 by cell death pathways in mammals and yeast. Mol Biol Cell. 13:1536–49.

    Article  CAS  PubMed  Google Scholar 

  • Bousset, K., and J.F. Diffley. 1998. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12:480–90.

    CAS  PubMed  Google Scholar 

  • Broach, J.R., Y.Y. Li, J. Feldman, M. Jayaram, J. Abraham, K.A. Nasmyth, and J.B. Hicks. 1983. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol. 47 Pt 2:1165–73.

    PubMed  Google Scholar 

  • Brown, G.W., and T.J. Kelly. 1999. Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase. Proc Natl Acad Sci U S A. 96:8443–8.

    CAS  PubMed  Google Scholar 

  • Calzada, A., M. Sacristan, E. Sanchez, and A. Bueno. 2001. Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature. 412:355–8.

    Article  CAS  PubMed  Google Scholar 

  • Calzada, A., M. Sanchez, E. Sanchez, and A. Bueno. 2000. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem. 275:9734–41.

    Article  CAS  PubMed  Google Scholar 

  • Clay-Farrace, L., C. Pelizon, D. Santamaria, J. Pines, and R.A. Laskey. 2003. Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. EMBO J. 22:704–12.

    Article  CAS  PubMed  Google Scholar 

  • Cocker, J.H., S. Piatti, C. Santocanale, K. Nasmyth, and J.F. Diffley. 1996. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature. 379:180–2.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, T.R., P.B. Carpenter, and W.G. Dunphy. 1996. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell. 87:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, V., D. Shechter, P.J. Lupardus, K.A. Cimprich, M. Gottesman, and J. Gautier. 2003. An ATR-and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell. 11:203–13.

    Article  CAS  PubMed  Google Scholar 

  • Coue, M., S.E. Kearsey, and M. Mechali. 1996. Chromotin binding, nuclear localization and phosphorylation of Xenopus cdc21 are cell-cycle dependent and associated with the control of initiation of DNA replication. EMBO J. 15:1085–97.

    CAS  PubMed  Google Scholar 

  • Dahmann, C., J.F. Diffley, and K.A. Nasmyth. 1995. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Current Biology. 5:1257–69.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, S., and L. Whitbread. 1995. Cell cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA replication in budding yeast. Proc Natl Acad Sci U S A. 92:2514–8.

    CAS  PubMed  Google Scholar 

  • Del Bene, F., K. Tessmar-Raible, and J. Wittbrodt. 2004. Direct interaction of geminin and Six3 in eye development. Nature. 427:745–9.

    Article  PubMed  Google Scholar 

  • Delmolino, L.M., P. Saha, and A. Dutta. 2001. Multiple mechanisms regulate subcellular localization of human CDC6. Journal of Biological Chemistry. 276:26947–54.

    Article  CAS  PubMed  Google Scholar 

  • DePamphilis, M.L. 1999. Replication origins in metazoan chromosomes: fact or fiction? Bioessays. 21:5–16.

    Article  CAS  PubMed  Google Scholar 

  • DePamphilis, M.L. 2003. Eukaryotic DNA replication origins: reconciling disparate data. Cell. 114:274–5.

    Article  CAS  PubMed  Google Scholar 

  • Detweiler, C.S., and J.J. Li. 1998. Ectopic induction of Clb2 in early G1 phase is sufficient to block prereplicative complex formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 95:2384–9.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, C., K. Wallenfang, F. Oesch, and R. Wieser. 1997. Translocation of cdk2 to the nucleus during G1-phase in PDGF-stimulated human fibroblasts. Exp Cell Res. 232:72–8.

    Article  CAS  PubMed  Google Scholar 

  • Diffley, J.F. 1994. Eukaryotic DNA replication. Curr Opin Cell Biol. 6:368–72.

    Article  CAS  PubMed  Google Scholar 

  • Diffley, J.F., and J.H. Cocker. 1992. Protein-DNA interactions at a yeast replication origin. Nature. 357:169–72.

    Article  CAS  PubMed  Google Scholar 

  • Diffley, J.F., J.H. Cocker, S.J. Dowell, J. Harwood, and A. Rowley. 1995. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle. J Cell Sci Suppl. 19:67–72.

    CAS  PubMed  Google Scholar 

  • Diffley, J.F., J.H. Cocker, S.J. Dowell, and A. Rowley. 1994. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell. 78:303–16.

    Article  CAS  PubMed  Google Scholar 

  • Diffley, J.F., and K. Labib. 2002. The chromosome replication cycle. J Cell Sci. 115:869–72.

    CAS  PubMed  Google Scholar 

  • Donaldson, A.D., W.L. Fangman, and B.J. Brewer. 1998. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 12:491–501.

    CAS  PubMed  Google Scholar 

  • Dowell, S.J., P. Romanowski, and J.F. Diffley. 1994. Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science. 265:1243–6.

    CAS  PubMed  Google Scholar 

  • Drury, L.S., G. Perkins, and J.F. Diffley. 1997. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16:5966–76.

    Article  CAS  PubMed  Google Scholar 

  • Drury, L.S., G. Perkins, and J.F. Diffley. 2000. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol. 10:231–40.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, A., and S.P. Bell. 1997. Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol. 13:293–332.

    Article  CAS  PubMed  Google Scholar 

  • Elledge, S.J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science. 274:1664–72.

    Article  CAS  PubMed  Google Scholar 

  • Elsasser, S., Y. Chi, P. Yang, and J.L. Campbell. 1999. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell. 10:3263–77.

    CAS  PubMed  Google Scholar 

  • Elsasser, S., F. Lou, B. Wang, J.L. Campbell, and A. Jong. 1996. Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol Biol Cell. 7:1723–35.

    CAS  PubMed  Google Scholar 

  • Fien, K., Y.S. Cho, J.K. Lee, S. Raychaudhuri, I. Tappin, and J. Hurwitz. 2004. Primer utilization by DNA polymerase alpha-primase is influenced by its interaction with Mcm10p. J Biol Chem. 279:16144–53.

    Article  CAS  PubMed  Google Scholar 

  • Findeisen, M., M. El-Denary, T. Kapitza, R. Graf, and U. Strausfeld. 1999. Cyclin Adependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. Eur J Biochem. 264:415–26.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, R.J., B.E. Bishop, R.P. Leon, R.A. Sclafani, C.M. Ogata, and X.S. Chen. 2003. The structure and function of MCM from archaeal M. Thermoautotrophicum.[see comment]. Nature Structural Biology. 10:160–7.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, M., Y. Ishimi, H. Nakamura, T. Kiyono, and T. Tsurumi. 2002. Nuclear organization of DNA replication initiation proteins in mammalian cells. J Biol Chem. 277:10354–61.

    CAS  PubMed  Google Scholar 

  • Fujita, M., C. Yamada, H. Goto, N. Yokoyama, K. Kuzushima, M. Inagaki, and T. Tsurumi. 1999. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. Journal of Biological Chemistry. 274:25927–32.

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan, V., P. Simancek, C. Houchens, H.A. Snaith, M.G. Frattini, S. Sazer, and T.J. Kelly. 2001. Redundant control of re-replication in fission yeast. Proc Natl Acad Sci U S A. 98:13114–9.

    Article  CAS  PubMed  Google Scholar 

  • Grabowski, B., and Z. Kelman. 2001. Autophosphorylation of archaeal Cdc6 homologues is regulated by DNA. Journal of Bacteriology. 183:5459–64.

    Article  CAS  PubMed  Google Scholar 

  • Guo, M., and B.A. Hay. 1999. Cell proliferation and apoptosis. Curr Opin Cell Biol. 11:745–52.

    Article  CAS  PubMed  Google Scholar 

  • Hamlin, J.L., and P.A. Dijkwel. 1995. On the nature of replication origins in higher eukaryotes. Curr Opin Genet Dev. 5:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, C.F. 1996. Characterization of an essential Orc2p-associated factor that plays a role in DNA replication. Mol Cell Biol. 16:1832–41.

    CAS  PubMed  Google Scholar 

  • Hardy, C.F., O. Dryga, S. Seematter, P.M. Pahl, and R.A. Sclafani. 1997. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A. 94:3151–5.

    CAS  PubMed  Google Scholar 

  • Hartwell, L.H., Mortimer, R.K., Culotti, J., and Culotti, M. 1973. Genetic control of the cell division cycle in yeast. Genetics. 74:267–86.

    Google Scholar 

  • Hennessy, K.M., C.D. Clark, and D. Botstein. 1990. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4:2252–63.

    CAS  PubMed  Google Scholar 

  • Higa, L.A., I.S. Mihaylov, D.P. Banks, J. Zheng, and H. Zhang. 2003. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol. 5:1008–15.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson, B., A. Li, S. Tada, and J.J. Blow. 2002. Geminin becomes activated as an inhibitor of Cdt1/RLF-B following nuclear import. Curr Biol. 12:678–83.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, J.F., and D. Beach. 1994. cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 13:425–34.

    CAS  PubMed  Google Scholar 

  • Hollingsworth, R.E., Jr., and R.A. Sclafani. 1990. DNA metabolism gene CDC7 from yeast encodes a serine (threonine) protein kinase. Proc Natl Acad Sci U S A. 87:6272–6.

    CAS  PubMed  Google Scholar 

  • Homesley, L., M. Lei, Y. Kawasaki, S. Sawyer, T. Christensen, and B.K. Tye. 2000. Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev. 14:913–26.

    CAS  PubMed  Google Scholar 

  • Hsiao, C.L., and J. Carbon. 1979. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A. 76:3829–33.

    CAS  PubMed  Google Scholar 

  • Ishimi, Y. 1997. A DNA helicase activity is associated with an MCM4,-6, and-7 protein complex. J Biol Chem. 272:24508–13.

    Article  CAS  PubMed  Google Scholar 

  • Ishimi, Y., Y. Komamura, Z. You, and H. Kimura. 1998. Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem. 273:8369–75.

    Article  CAS  PubMed  Google Scholar 

  • Ishimi, Y., and Y. Komamura-Kohno. 2001. Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem. 276:34428–33.

    CAS  PubMed  Google Scholar 

  • Izumi, M., K. Yanagi, T. Mizuno, M. Yokoi, Y. Kawasaki, K.Y. Moon, J. Hurwitz, F. Yatagai, and F. Hanaoka. 2000. The human homolog of Saccharomyces cerevisiae Mcm10 interacts with replication factors and dissociates from nuclease-resistant nuclear structures in G(2) phase. Nucleic Acids Res. 28:4769–77.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, M., F. Yatagai, and F. Hanaoka. 2001. Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J Biol Chem. 276:48526–31.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, M., F. Yatagai, and F. Hanaoka. 2004. Localization of human Mcm10 is spatially and temporally regulated during the S phase. J Biol Chem. 279:32569–77.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, A.L., P.M. Pahl, K. Harrison, J. Rosamond, and R.A. Sclafani. 1993. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol. 13:2899–908.

    CAS  PubMed  Google Scholar 

  • Jacob, F., Brenner, S., and Cuzin, F. 1963. On the regulation of DNA replication in bacteria. Cold Spring Habor Symp. Quant. Biol. 28:329–348.

    CAS  Google Scholar 

  • Jallepalli, P.V., G.W. Brown, M. Muzi-Falconi, D. Tien, and T.J. Kelly. 1997. Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev. 11:2767–79.

    CAS  PubMed  Google Scholar 

  • Jares, P., A. Donaldson, and J.J. Blow. 2000. The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? Embo Rep. 1:319–22.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., N.J. Wells, and T. Hunter. 1999. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc Natl Acad Sci U S A. 96:6193–8.

    CAS  PubMed  Google Scholar 

  • Johnston, L.H., H. Masai, and A. Sugino. 1999. First the CDKs, now the DDKs. Trends Cell Biol. 9:249–52.

    Article  CAS  PubMed  Google Scholar 

  • Kalejta, R.F., X. Li, L.D. Mesner, P.A. Dijkwel, H.B. Lin, and J.L. Hamlin. 1998. Distal sequences, but not ori-beta/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol Cell. 2:797–806.

    Article  CAS  PubMed  Google Scholar 

  • Kamimura, Y., H. Masumoto, A. Sugino, and H. Araki. 1998. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol. 18:6102–9.

    CAS  PubMed  Google Scholar 

  • Kamimura, Y., Y.S. Tak, A. Sugino, and H. Araki. 2001. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20:2097–107.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki, Y., S. Hiraga, and A. Sugino. 2000. Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells. 5:975–89.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, T.J., and G.W. Brown. 2000. Regulation of chromosome replication. Annu Rev Biochem. 69:829–80.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H., N. Nozaki, and K. Sugimoto. 1994. DNA polymerase alpha associated protein P1, a murine homolog of yeast MCM3, changes its intranuclear distribution during the DNA synthetic period. EMBO J. 13:4311–20.

    CAS  PubMed  Google Scholar 

  • Kingsman, A.J., L. Clarke, R.K. Mortimer, and J. Carbon. 1979. Replication in Saccharomyces cerevisiae of plasmid pBR313 carrying DNA from the yeast trpl region. Gene. 7:141–52.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, R.D., R.J. Austin, and S.P. Bell. 1997. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 88:493–502.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, T., T. Rein, and M.L. DePamphilis. 1998. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Mol Cell Biol. 18:3266–77.

    CAS  PubMed  Google Scholar 

  • Kondo, T., M. Kobayashi, J. Tanaka, A. Yokoyama, S. Suzuki, N. Kato, M. Onozawa, K. Chiba, S. Hashino, M. Imamura, Y. Minami, N. Minamino, and M. Asaka. 2004. Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J Biol Chem. 279:27315–9.

    CAS  PubMed  Google Scholar 

  • Koonin, E.V. 1993. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21:2541–7.

    CAS  PubMed  Google Scholar 

  • Kroll, K.L., A.N. Salic, L.M. Evans, and M.W. Kirschner. 1998. Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development. 125:3247–58.

    CAS  PubMed  Google Scholar 

  • Kubota, Y., Y. Takase, Y. Komori, Y. Hashimoto, T. Arata, Y. Kamimura, H. Araki, and H. Takisawa. 2003. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17:1141–52.

    Article  CAS  PubMed  Google Scholar 

  • Labib, K., J.F. Diffley, and S.E. Kearsey. 1999. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol. 1:415–22.

    CAS  PubMed  Google Scholar 

  • Lee, C., B. Hong, J.M. Choi, Y. Kim, S. Watanabe, Y. Ishimi, T. Enomoto, S. Tada, and Y. Cho. 2004. Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature. 430:913–7.

    CAS  PubMed  Google Scholar 

  • Lee, D.G., and S.P. Bell. 1997. Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol Cell Biol. 17:7159–68.

    CAS  PubMed  Google Scholar 

  • Lee, D.G., A.M. Makhov, R.D. Klemm, J.D. Griffith, and S.P. Bell. 2000. Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding. EMBO J. 19:4774–82.

    CAS  PubMed  Google Scholar 

  • Lee, J.K., and J. Hurwitz. 2000. Isolation and characterization of various complexes of the minichromosome maintenance proteins of Schizosaccharomyces pombe. J Biol Chem. 275:18871–8.

    CAS  PubMed  Google Scholar 

  • Lee, J.K., and J. Hurwitz. 2001. Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc Natl Acad Sci U S A. 98:54–9.

    CAS  PubMed  Google Scholar 

  • Lee, J.K., Y.S. Seo, and J. Hurwitz. 2003. The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A. 100:2334–9.

    CAS  PubMed  Google Scholar 

  • Lei, M., Y. Kawasaki, M.R. Young, M. Kihara, A. Sugino, and B.K. Tye. 1997. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11:3365–74.

    CAS  PubMed  Google Scholar 

  • Lei, M., and B.K. Tye. 2001. Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci. 114:1447–54.

    CAS  PubMed  Google Scholar 

  • Lengronne, A., and E. Schwob. 2002. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell. 9:1067–78.

    Article  CAS  PubMed  Google Scholar 

  • Li, A., and J.J. Blow. 2004. Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nat Cell Biol. 6:260–7.

    Article  CAS  PubMed  Google Scholar 

  • Li, C.J., and M.L. DePamphilis. 2002. Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol Cell Biol. 22:105–16.

    PubMed  Google Scholar 

  • Li, C.J., A. Vassilev, and M.L. DePamphilis. 2004. Role for Cdk1 (Cdc2)/cyclin A in preventing the mammalian origin recognition complex’s largest subunit (Orc1) from binding to chromatin during mitosis. Mol Cell Biol. 24:5875–86.

    CAS  PubMed  Google Scholar 

  • Li, D., R. Zhao, W. Lilyestrom, D. Gai, R. Zhang, J.A. DeCaprio, E. Fanning, A. Jochimiak, G. Szakonyi, and X.S. Chen. 2003a. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature. 423:512–8.

    CAS  PubMed  Google Scholar 

  • Li, X., Q. Zhao, R. Liao, P. Sun, and X. Wu. 2003b. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 278:30854–8.

    CAS  PubMed  Google Scholar 

  • Liang, C., and B. Stillman. 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11:3375–86.

    CAS  PubMed  Google Scholar 

  • Liang, C., M. Weinreich, and B. Stillman. 1995. ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell. 81:667–76.

    Article  CAS  PubMed  Google Scholar 

  • Linskens, M.H., and J.A. Huberman. 1990. The two faces of higher eukaryotic DNA replication origins. Cell. 62:845–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu, E., X. Li, F. Yan, Q. Zhao, and X. Wu. 2004. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 279:17283–8.

    CAS  PubMed  Google Scholar 

  • Luo, L., X. Yang, Y. Takihara, H. Knoetgen, and M. Kessel. 2004. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature. 427:749–53.

    Article  CAS  PubMed  Google Scholar 

  • Lygerou, Z., and P. Nurse. 1999. The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J Cell Sci. 112 ( Pt 21):3703–12.

    CAS  PubMed  Google Scholar 

  • Maine, G.T., P. Sinha, and B.K. Tye. 1984. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 106:365–85.

    CAS  PubMed  Google Scholar 

  • Maiorano, D., J.M. Lemaitre, and M. Mechali. 2000. Stepwise regulated chromatin assembly of MCM2-7 proteins. J Biol Chem. 275:8426–31.

    CAS  PubMed  Google Scholar 

  • Makiniemi, M., T. Hillukkala, J. Tuusa, K. Reini, M. Vaara, D. Huang, H. Pospiech, I. Majuri, T. Westerling, T.P. Makela, and J.E. Syvaoja. 2001. BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem. 276:30399–406.

    Article  CAS  PubMed  Google Scholar 

  • Marahrens, Y., and B. Stillman. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 255:817–23.

    CAS  PubMed  Google Scholar 

  • Masai, H., and K. Arai. 2000. Dbf4 motifs: conserved motifs in activation subunits for Cdc7 kinases essential for S-phase. Biochem Biophys Res Commun. 275:228–32.

    Article  CAS  PubMed  Google Scholar 

  • Masai, H., and K. Arai. 2002. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol. 190:287–96.

    Article  CAS  PubMed  Google Scholar 

  • Masai, H., E. Matsui, Z. You, Y. Ishimi, K. Tamai, and K. Arai. 2000. Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 bY Cdks. J Biol Chem. 275:29042–52.

    Article  CAS  PubMed  Google Scholar 

  • Masumoto, H., S. Muramatsu, Y. Kamimura, and H. Araki. 2002. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature. 415:651–5.

    Article  CAS  PubMed  Google Scholar 

  • Masumoto, H., A. Sugino, and H. Araki. 2000. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol. 20:2809–17.

    Article  CAS  PubMed  Google Scholar 

  • McGarry, T.J. 2002. Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus. Mol Biol Cell. 13:3662–71.

    Article  CAS  PubMed  Google Scholar 

  • McGarry, T.J., and M.W. Kirschner. 1998. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 93:1043–53.

    Article  CAS  PubMed  Google Scholar 

  • Melixetian, M., A. Ballabeni, L. Masiero, P. Gasparini, R. Zamponi, J. Bartek, J. Lukas, and K. Helin. 2004. Loss of Geminin induces re-replication in the presence of functional p53. J Cell Biol. 165:473–82.

    Article  CAS  PubMed  Google Scholar 

  • Mendez, J., X.H. Zou-Yang, S.Y. Kim, M. Hidaka, W.P. Tansey, and B. Stillman. 2002. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell. 9:481–91.

    Article  CAS  PubMed  Google Scholar 

  • Mihaylov, I.S., T. Kondo, L. Jones, S. Ryzhikov, J. Tanaka, J. Zheng, L.A. Higa, N. Minamino, L. Cooley, and H. Zhang. 2002. Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol. 22:1868–80.

    Article  CAS  PubMed  Google Scholar 

  • Mimura, S., and H. Takisawa. 1998. Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17:5699–707.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, T., N. Takahashi, and B. Stillman. 2000. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev. 14:1631–41.

    CAS  PubMed  Google Scholar 

  • Moir, D., S.E. Stewart, B.C. Osmond, and D. Botstein. 1982. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics. 100:547–63.

    CAS  PubMed  Google Scholar 

  • Moll, T., G. Tebb, U. Surana, H. Robitsch, and K. Nasmyth. 1991. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell. 66:743–58.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, H., and P. Nurse. 1999. Meiotic DNA replication checkpoint control in fission yeast. Genes Dev. 13:2581–93.

    Article  CAS  PubMed  Google Scholar 

  • Musahl, C., D. Schulte, R. Burkhart, and R. Knippers. 1995. A human homologue of the yeast replication protein Cdc21. Interactions with other Mcm proteins. Eur J Biochem. 230:1096–101.

    Article  CAS  PubMed  Google Scholar 

  • Muzi-Falconi, M., and T.J. Kelly. 1995. Orp1, a member of the Cdc18/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex. Proceedings of the National Academy of Sciences of the United States of America. 92:12475–9.

    CAS  PubMed  Google Scholar 

  • Neuwald, A.F., L. Aravind, J.L. Spouge, and E.V. Koonin. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:27–43.

    CAS  PubMed  Google Scholar 

  • Newlon, C.S. 1997. Putting it all together: building a prereplicative complex. Cell. 91:717–20.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, V.Q., C. Co, K. Irie, and J.J. Li. 2000. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr Biol. 10:195–205.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, V.Q., C. Co, and J.J. Li. 2001. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 411:1068–73.

    Article  CAS  PubMed  Google Scholar 

  • Nishitani, H., and Z. Lygerou. 2002. Control of DNA replication licensing in a cell cycle. Genes Cells. 7:523–34.

    Article  CAS  PubMed  Google Scholar 

  • Nishitani, H., Z. Lygerou, T. Nishimoto, and P. Nurse. 2000. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 404:625–8.

    CAS  PubMed  Google Scholar 

  • Nishitani, H., and P. Nurse. 1995. p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell. 83:397–405.

    Article  CAS  PubMed  Google Scholar 

  • Nishitani, H., S. Taraviras, Z. Lygerou, and T. Nishimoto. 2001. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem. 276:44905–11.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, E., P. Shanahan, C. Noguchi, and P. Russell. 2002. CDK phosphorylation of Drc1 regulates DNA replication in fission yeast. Curr Biol. 12:599–605.

    Article  CAS  PubMed  Google Scholar 

  • Nougarede, R., F. Della Seta, P. Zarzov, and E. Schwob. 2000. Hierarchy of S-phase-promoting factors: yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol Cell Biol. 20:3795–806.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, S., Y. Tatsumi, M. Fujita, T. Tsurimoto, and C. Obuse. 2003. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J Biol Chem. 278:41535–40.

    CAS  PubMed  Google Scholar 

  • Pacek, M., and J.C. Walter. 2004. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23:3667–76.

    Article  CAS  PubMed  Google Scholar 

  • Pape, T., H. Meka, S. Chen, G. Vicentini, M. van Heel, and S. Onesti. 2003. Hexameric ring structure of the full-length archael MCM protein complex. Embo Reports. 4:1079–83.

    Article  CAS  PubMed  Google Scholar 

  • Pasion, S.G., and S.L. Forsburg. 1999. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol Biol Cell. 10:4043–57.

    CAS  PubMed  Google Scholar 

  • Patterson, M., R.A. Sclafani, W.L. Fangman, and J. Rosamond. 1986. Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae. Mol Cell Biol. 6:1590–8.

    CAS  PubMed  Google Scholar 

  • Pereverzeva, I., E. Whitmire, B. Khan, and M. Coue. 2000. Distinct phosphoisoforms of the Xenopus Mcm4 protein regulate the function of the Mcm complex. Mol Cell Biol. 20:3667–76.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, G., and J.F. Diffley. 1998. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell. 2:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, B.O., J. Lukas, C.S. Sorensen, J. Bartek, and K. Helin. 1999. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18:396–410.

    CAS  PubMed  Google Scholar 

  • Prasanth, S.G., K.V. Prasanth, K. Siddiqui, D.L. Spector, and B. Stillman. 2004. Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J. 23:2651–63.

    Article  CAS  PubMed  Google Scholar 

  • Prasanth, S.G., K.V. Prasanth, and B. Stillman. 2002. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science. 297:1026–31.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, L.M., A. Herr, T.J. McGarry, and H. Richardson. 2001. The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev. 15:2741–54.

    Article  CAS  PubMed  Google Scholar 

  • Rao, H., and B. Stillman. 1995. The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators. Proc Natl Acad Sci U S A. 92:2224–8.

    CAS  PubMed  Google Scholar 

  • Romanowski, P., M.A. Madine, A. Rowles, J.J. Blow, and R.A. Laskey. 1996. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol. 6:1416–25.

    Article  CAS  PubMed  Google Scholar 

  • Rowles, A., S. Tada, and J.J. Blow. 1999. Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci. 112 (Pt 12):2011–8.

    CAS  PubMed  Google Scholar 

  • Rowley, A., J.H. Cocker, J. Harwood, and J.F. Diffley. 1995. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 14:2631–41.

    CAS  PubMed  Google Scholar 

  • Saha, P., J. Chen, K.C. Thome, S.J. Lawlis, Z.H. Hou, M. Hendricks, J.D. Parvin, and A. Dutta. 1998a. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol. 18:2758–67.

    CAS  PubMed  Google Scholar 

  • Saha, P., K.C. Thome, R. Yamaguchi, Z. Hou, S. Weremowicz, and A. Dutta. 1998b. The human homolog of Saccharomyces cerevisiae CDC45. J Biol Chem. 273:18205–9.

    CAS  PubMed  Google Scholar 

  • Saha, S., Y. Shan, L.D. Mesner, and J.L. Hamlin. 2004. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev. 18:397–410.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, M., A. Calzada, and A. Bueno. 1999. The Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J Biol Chem. 274:9092–7.

    CAS  PubMed  Google Scholar 

  • Santocanale, C., and J.F. Diffley. 1998. A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395:615–8.

    CAS  PubMed  Google Scholar 

  • Saxena, S., P. Yuan, S.K. Dhar, T. Senga, D. Takeda, H. Robinson, S. Kornbluth, K. Swaminathan, and A. Dutta. 2004. A dimerized coiled-coil domain and an adjoining part of geminin interact with two sites on Cdt1 for replication inhibition. Mol Cell. 15:245–58.

    Article  CAS  PubMed  Google Scholar 

  • Schwacha, A., and S.P. Bell. 2001. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell. 8:1093–104.

    Article  CAS  PubMed  Google Scholar 

  • Sclafani, R.A. 2000. Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci. 113 (Pt 12):2111–7.

    CAS  PubMed  Google Scholar 

  • Stillman, B. 1996. Cell cycle control of DNA replication. Science. 274:1659–64.

    Article  CAS  PubMed  Google Scholar 

  • Stinchcomb, D.T., K. Struhl, and R.W. Davis. 1979. Isolation and characterisation of a yeast chromosomal replicator. Nature. 282:39–43.

    Article  CAS  PubMed  Google Scholar 

  • Struhl, K., D.T. Stinchcomb, S. Scherer, and R.W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 76:1035–9.

    CAS  PubMed  Google Scholar 

  • Sugimoto, N., Y. Tatsumi, T. Tsurumi, A. Matsukage, T. Kiyono, H. Nishitani, and M. Fujita. 2004. Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem. 279:19691–7.

    CAS  PubMed  Google Scholar 

  • Tada, S., A. Li, D. Maiorano, M. Mechali, and J.J. Blow. 2001. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 3:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Takayama, Y., Y. Kamimura, M. Okawa, S. Muramatsu, A. Sugino, and H. Araki. 2003. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17:1153–65.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., and J.F. Diffley. 2002. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 4:198–207.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., D. Knapp, and K. Nasmyth. 1997. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell. 90:649–60.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., and K. Nasmyth. 1998. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin-and Dbf4-dependent kinases. EMBO J. 17:5182–91.

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi, Y., S. Ohta, H. Kimura, T. Tsurimoto, and C. Obuse. 2003. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J Biol Chem. 278:41528–34.

    Article  CAS  PubMed  Google Scholar 

  • Tercero, J.A., K. Labib, and J.F. Diffley. 2000. DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO Journal. 19:2082–93.

    Article  CAS  PubMed  Google Scholar 

  • Thome, K.C., S.K. Dhar, D.G. Quintana, L. Delmolino, A. Shahsafaei, and A. Dutta. 2000. Subsets of human origin recognition complex (ORC) subunits are expressed in non-proliferating cells and associate with non-ORC proteins. J Biol Chem. 275:35233–41.

    Article  CAS  PubMed  Google Scholar 

  • Thomer, M., N.R. May, B.D. Aggarwal, G. Kwok, and B.R. Calvi. 2004. Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development. 131:4807–18.

    Article  CAS  PubMed  Google Scholar 

  • Thommes, P., Y. Kubota, H. Takisawa, and J.J. Blow. 1997. The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J. 16:3312–9.

    Article  CAS  PubMed  Google Scholar 

  • Todorov, I.T., A. Attaran, and S.E. Kearsey. 1995. BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J Cell Biol. 129:1433–45.

    Article  CAS  PubMed  Google Scholar 

  • Tye, B.K. 1999. MCM proteins in DNA replication. Annu Rev Biochem. 68:649–86.

    Article  CAS  PubMed  Google Scholar 

  • Van Hatten, R.A., A.V. Tutter, A.H. Holway, A.M. Khederian, J.C. Walter, and W.M. Michael. 2002. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol. 159:541–7.

    PubMed  Google Scholar 

  • Vas, A., W. Mok, and J. Leatherwood. 2001. Control of DNA re-replication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol. 21:5767–77.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri, C., S. Saxena, Y. Jeon, C. Lee, K. Murata, Y. Machida, N. Wagle, D.S. Hwang, and A. Dutta. 2003. A p53-dependent checkpoint pathway prevents re-replication. Mol Cell. 11:997–1008.

    CAS  PubMed  Google Scholar 

  • Walter, J., and J. Newport. 2000. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell. 5:617–27.

    Article  CAS  PubMed  Google Scholar 

  • Walter, J.C. 2000. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem. 275:39773–8.

    CAS  PubMed  Google Scholar 

  • Wang, H., and S.J. Elledge. 1999. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 96:3824–9.

    CAS  PubMed  Google Scholar 

  • Wang, S., P.A. Dijkwel, and J.L. Hamlin. 1998. Lagging-strand, early-labelling, and two-dimensional gel assays suggest multiple potential initiation sites in the Chinese hamster dihydrofolate reductase origin. Mol Cell Biol. 18:39–50.

    PubMed  Google Scholar 

  • Weinreich, M., C. Liang, and B. Stillman. 1999. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A. 96:441–6.

    Article  CAS  PubMed  Google Scholar 

  • Weinreich, M., and B. Stillman. 1999. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 18:5334–46.

    Article  CAS  PubMed  Google Scholar 

  • Wilmes, G.M., V. Archambault, R.J. Austin, M.D. Jacobson, S.P. Bell, and F.R. Cross. 2004. Interaction of the S-phase cyclin Clb5 with an “RXL” docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 18:981–91.

    Article  CAS  PubMed  Google Scholar 

  • Wohlschlegel, J.A., S.K. Dhar, T.A. Prokhorova, A. Dutta, and J.C. Walter. 2002. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell. 9:233–40.

    Article  CAS  PubMed  Google Scholar 

  • Wohlschlegel, J.A., B.T. Dwyer, S.K. Dhar, C. Cvetic, J.C. Walter, and A. Dutta. 2000. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 290:2309–12.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, Y., T. Nakagawa, and H. Masukata. 2004. A novel intermediate in initiation complex assembly for fission yeast DNA replication. Mol Biol Cell. 15:3740–50.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., A.M. Merchant, and B.K. Tye. 1993. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7:2149–60.

    CAS  PubMed  Google Scholar 

  • Yoon, H.J., and J.L. Campbell. 1991. The CDC7 protein of Saccharomyces cerevisiae is a phosphoprotein that contains protein kinase activity. Proc Natl Acad Sci U S A. 88:3574–8.

    CAS  PubMed  Google Scholar 

  • Young, M.R., and B.K. Tye. 1997. Mcm2 and Mcm3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae. Mol Biol Cell. 8:1587–601.

    CAS  PubMed  Google Scholar 

  • Zhong, W., H. Feng, F.E. Santiago, and E.T. Kipreos. 2003. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature. 423:885–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Y. Chen, and A. Dutta. 2004. Re-replication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol. 24:7140–50.

    CAS  PubMed  Google Scholar 

  • Zou, L., and B. Stillman. 1998. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science. 280:593–6.

    Article  CAS  PubMed  Google Scholar 

  • Zou, L., and B. Stillman. 2000. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 20:3086–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Zhu, W., Abbas, T., Dutta, A. (2005). DNA Replication and Genomic Instability. In: Back, N., Cohen, I.R., Kritchevsky, D., Lajtha, A., Paoletti, R., Nigg, E.A. (eds) Genome Instability in Cancer Development. Advances in Experimental Medicine and Biology, vol 570. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3764-3_9

Download citation

Publish with us

Policies and ethics