Skip to main content

Likely Scenarios of Intron Evolution

  • Conference paper
Book cover Comparative Genomics (RCG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3678))

Included in the following conference series:

Abstract

Whether common ancestors of eukaryotes and prokaryotes had introns is one of the oldest unanswered questions in molecular evolution. Recently completed genome sequences have been used for comprehensive analyses of exon-intron organization in orthologous genes of diverse organisms, leading to more refined work on intron evolution. Large sets of intron presence-absence data require rigorous theoretical frameworks in which different hypotheses can be compared and validated. We describe a probabilistic model for intron gains and losses along an evolutionary tree. The model parameters are estimated using maximum likelihood. We propose a method for estimating the number of introns lost or unobserved in all extant organisms in a study, and show how to calculate counts of intron gains and losses along the branches by using posterior probabilities. The methods are used to analyze the most comprehensive intron data set available presently, consisting of 7236 intron sites from eight eukaryotic organisms. The analysis shows a dynamic history with frequent intron losses and gains, and fairly — albeit not as greatly as previously postulated — intron-rich ancestral organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crick, W.: Split genes and RNA splicing. Science 204, 264–271 (1979)

    Article  Google Scholar 

  2. Lynch, M., Richardson, A.O.: The evolution of spliceosomal introns. Current Opinion in Genetics and Development 12, 701–710 (2002)

    Article  Google Scholar 

  3. de Souza, S.J.: The emergence of a synthetic theory of intron evolution. Genetica 118, 117–121 (2003)

    Article  Google Scholar 

  4. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology 13, 1512–1517 (2003)

    Article  Google Scholar 

  5. Qiu, W.G., Schisler, N., Stoltzfus, A.: The evolutionary gain of spliceosomal introns: Sequence and phase preferences. Molecular Biology and Evolution 21, 1252–1263 (2004)

    Article  Google Scholar 

  6. Nielsen, C.B., Friendman, B., Birren, B., Burge, C.B., Galagan, J.E.: Patterns of intron gain and loss in fungi. PLoS Biology 2, e422 (2004)

    Google Scholar 

  7. Coghlan, A., Wolfe, K.H.: Origins of recently gained introns in Caenorhabditis. Proceedings of the National Academy of Sciences of the USA 101, 11362–11367 (2004)

    Article  Google Scholar 

  8. Vaňáčová, Š., Yan, W., Carlton, J.M., Johnson, P.J.: Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proceedings of the National Academy of Sciences of the USA 102, 4430–4435 (2005)

    Article  Google Scholar 

  9. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley & Sons, Chichester (1996)

    MATH  Google Scholar 

  10. Rzhetsky, A., Ayala, F.J., Hsu, L.C., Chang, C., Yoshida, A.: Exon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory. Proceedings of the National Academy of Sciences of the USA 94, 6820–6825 (1997)

    Article  Google Scholar 

  11. Rogozin, I.B., Lyons-Weiler, J., Koonin, E.W.: Intron sliding in conserved gene families. Trends in Genetics 16, 430–432 (2000)

    Article  Google Scholar 

  12. Felsenstein, J.: Inferring Pylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  13. Tuffley, C., Steel, M.: Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology 59, 581–607 (1997)

    Article  MATH  Google Scholar 

  14. Roch, S.: A short proof that phylogenetic reconstruction by maximum likelihood is hard. Technical report (2005), math.PR/0504378atarXiv.org

  15. Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Proc. Ninth Annual International Conference on Research in Computational Biology (RECOMB) (2005) (in press)

    Google Scholar 

  16. Roy, S.W., Gilbert, W.: Complex early genes. Proceedings of the National Academy of Sciences of the USA 102, 1986–1991 (2005)

    Article  Google Scholar 

  17. Roy, S.W., Gilbert, W.: Rates of intron loss and gain: Implications for early eukaryotic evolution. Proceedings of the National Academy of Sciences of the USA 102, 5773–5778 (2005)

    Article  Google Scholar 

  18. Sverdlov, A.V., Rogozin, I.B., Babenko, V.N., Koonin, E.V.: Conservation versus parallel gains in intron evolution. Nucleic Acids Research 33, 1741–1748 (2005)

    Article  Google Scholar 

  19. Koshi, J.M., Goldstein, R.A.: Probabilistic reconstruction of ancestral protein sequences. Journal of Molecular Evolution 42, 313–320 (1996)

    Article  Google Scholar 

  20. Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Coelomata and not Ecdysozoa: Evidence from genome-wide phylogenetic analysis. Genome Research 14, 29–36 (2004)

    Article  Google Scholar 

  21. Roy, S.W., Gilbert, W.: Resolution of a deep animal divergence by the pattern of intron conservation. Proceedings of the National Academy of Sciences of the USA 102, 4403–4408 (2005)

    Article  Google Scholar 

  22. Philippe, H., Lartillot, N., Brinkmann, H.: Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution 22, 1246–1253 (2005)

    Article  Google Scholar 

  23. Philip, G.K., Creevey, C.J., McInerney, J.O.: The Opisthokonta and the Ecdysozoa may not be clades: Stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Molecular Biology and Evolution 22, 1175–1184 (2005)

    Article  Google Scholar 

  24. Le Quesne, W.J.: The uniquely evolved character concept and its cladistic application. Systematic Zoology 23, 513–517 (1974)

    Article  Google Scholar 

  25. Farris, J.S.: Phylogenetic analysis under Dollo’s law. Systematic Zoology 26, 77–88 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Csűrös, M. (2005). Likely Scenarios of Intron Evolution. In: McLysaght, A., Huson, D.H. (eds) Comparative Genomics. RCG 2005. Lecture Notes in Computer Science(), vol 3678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554714_5

Download citation

  • DOI: https://doi.org/10.1007/11554714_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28932-6

  • Online ISBN: 978-3-540-31814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics