Skip to main content

Depolarisation Phenomena in Traumatic and Ischaemic Brain Injury

  • Chapter

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 30))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarisation. Physiol Rev 81:1065–1096

    CAS  PubMed  Google Scholar 

  2. Leão AAP (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  3. Hossmann KA (1996) Periinfarct depolarizations. [Review] [81 refs]. Cerebrovasc Brain Metab Rev 8:195–208

    CAS  PubMed  Google Scholar 

  4. Strong AJ, Fabricius M, Boutelle MG, Hibbins SJ, Hopwood SE, Jones R et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33:2738–2743

    PubMed  Google Scholar 

  5. Marshall WH (1959) Spreading cortical depression of Leão. Physiol Rev 39:239–279

    CAS  PubMed  Google Scholar 

  6. Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on spreading depression. [Review] [124 refs]. Brain Res — Brain Res Rev 32:215–234

    CAS  PubMed  Google Scholar 

  7. Gorji A (2001) Spreading depression: a review of the clinical relevance. Brain Res Rev 38:33–60

    CAS  PubMed  Google Scholar 

  8. Obrenovitch TP, Zilkha E, Urenjak J (1996) Evidence against high extracellular glutamate promoting the elicitation of spreading depression by potassium. J Cereb Blood Flow Metab 16:923–931

    CAS  PubMed  Google Scholar 

  9. Streit DS, Ferreira Filho CR, Martins-Ferreira H (1995) Spreading depression in isolated spinal cord. J Neurophysiol 74:888–890

    CAS  PubMed  Google Scholar 

  10. Nicholson C (1984) Comparative neurophysiology of spreading depression in the cerebellum. [Review] [40 refs]. Anais Da Academia Brasileira de Ciencias 56:481–494

    CAS  PubMed  Google Scholar 

  11. Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19:154–171

    CAS  PubMed  Google Scholar 

  12. Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    CAS  PubMed  Google Scholar 

  13. Muller M, Somjen GG (2000) Na(+) and K(+) concentrations, extra-and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735–745

    CAS  PubMed  Google Scholar 

  14. Hansen AJ, Zeuthen T (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445

    CAS  PubMed  Google Scholar 

  15. Collewijn H, Van Harreveld A (1966) Membrane potential of cerebral cortical cells during spreading depression and asphyxia. Exp Neurol 15:425–436

    CAS  PubMed  Google Scholar 

  16. Leão AAP, Martins-Ferreira H (1953) Alteraçao da impedancia electrica no decurso de depressão alastrante da atividade do cortex cerebral. Ann Acad Brasil Cienc 25:259–266

    Google Scholar 

  17. Czeh G, Aitken PG, Somjen GG (1993) Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization. Brain Res 632:195–208

    CAS  PubMed  Google Scholar 

  18. Snow RW, Taylor CP, Dudek FE (1983) Electrophysiological and optical changes in slices of rat hippocampus during spreading depression. J Neurophysiol 50:561–572

    CAS  PubMed  Google Scholar 

  19. Hasegawa Y, Latour LL, Formato JE, Sotak CH, Fisher M (1995) Spreading waves of a reduced diffusion coefficient of water in normal and ischemic rat brain. J Cereb Blood Flow Metab 15:179–187

    CAS  PubMed  Google Scholar 

  20. James MF, Smith MI, Bockhorst KH, Hall LD, Houston GC, Papadakis NG et al (1999) Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging. J Physiol 519 Pt 2:415–425

    Google Scholar 

  21. Martins-Ferreira H, de Castro GO (1966) Light-scattering changes accompanying spreading depression in isolated retina. J Neurophysiol 29:715–726

    CAS  PubMed  Google Scholar 

  22. Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335:353–374

    CAS  PubMed  Google Scholar 

  23. Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta Physiol Scand 102:324–329

    CAS  PubMed  Google Scholar 

  24. Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209

    CAS  PubMed  Google Scholar 

  25. Van Harreveld A (1959) Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J Neurochem 3:300–315

    PubMed  Google Scholar 

  26. Van Harreveld A, Fifkova E (1970) Glutamate release from the retina during spreading depression. J Neurobiol 2:13–29

    PubMed  Google Scholar 

  27. Obrenovitch TP, Zilkha E (1995) High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression. J Neurophysiol 73:2107–2114

    CAS  PubMed  Google Scholar 

  28. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    CAS  PubMed  Google Scholar 

  29. Willmott NJ, Wong K, Strong AJ (2000) A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia. J Neurosci 20:1767–1779

    CAS  PubMed  Google Scholar 

  30. Willmott NJ, Wong K, Strong AJ (2000) Intercellular Ca(2+) waves in rat hippocampal slice and dissociated glial-neuron cultures mediated by nitric oxide. FEBS Lett 487:239–247

    CAS  PubMed  Google Scholar 

  31. Nedergaard M (1994) Direct signalling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    CAS  PubMed  Google Scholar 

  32. Somjen GG (1975) Electrophysiology of neuroglia. [Review] [174 refs]. Ann Rev Physiol 37:163–190

    CAS  Google Scholar 

  33. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    CAS  PubMed  Google Scholar 

  34. Charles A, Giaume C (2002) Intercellular calcium waves in astrocytes: underlying mechanisms and functional significance. In: Volterra A, Magistretti P, Haydon P (eds). The Tripartite Synapse: glia in synaptic transmission, 1 edn. Oxford University Press, New York, p 110–126

    Google Scholar 

  35. Kunkler PE, Kraig RP (1998) Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosc 18:3416–3425

    CAS  Google Scholar 

  36. Mantz J, Cordier J, Giaume C (1993) Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology 78:892–901

    CAS  PubMed  Google Scholar 

  37. Saito R, Graf R, Hubel K, Taguchi J, Rosner G, Fujita T et al (1995) Halothane, but not alpha-chloralose, blocks potassium-evoked cortical spreading depression in cats. Brain Res 699:109–115

    CAS  PubMed  Google Scholar 

  38. Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD (1997) Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab 17:857–864

    CAS  PubMed  Google Scholar 

  39. Green JD, Petsche H (1961) Hippocampal electrical activity. IV. Abnormal electrical activity. Electroenceph Clin Neurophysiol 13:868–879

    Google Scholar 

  40. Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    CAS  PubMed  Google Scholar 

  41. Leuba G, Garey LJ (1989) Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exptl Brain Res 77:31–38

    CAS  Google Scholar 

  42. Largo C, Ibarz JM, Herreras O (1997) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J Neurophysiol 78:295–307

    CAS  PubMed  Google Scholar 

  43. Largo C, Tombaugh GC, Aitken PG, Herreras O, Somjen GG (1997) Heptanol but not fluoroacetate prevents the propagation of spreading depression in rat hippocampal slices. J Neurophysiol 77:9–16

    CAS  PubMed  Google Scholar 

  44. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199

    CAS  PubMed  Google Scholar 

  45. Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow: relationships during progressive ischaemia in baboon cerebral cortex. J Neurol Sci 32:305–321

    CAS  PubMed  Google Scholar 

  46. Rosenthal M, Somjen G (1973) Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol 36:739–749

    CAS  PubMed  Google Scholar 

  47. Lauritzen M, Jorgensen MB, Diemer NH, Gjedde A, Hansen AJ (1982) Persistent oligemia of rat cerebral cortex in the wake of spreading depression. Ann Neurol 12:469–474

    CAS  PubMed  Google Scholar 

  48. Back T, Kohno K, Hossmann KA (1994) Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 14:12–19

    CAS  PubMed  Google Scholar 

  49. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    CAS  PubMed  Google Scholar 

  50. Ueki M, Linn F, Hossmann KA (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494

    CAS  PubMed  Google Scholar 

  51. Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L (1993) Neurotrans-mitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15:306–312

    CAS  PubMed  Google Scholar 

  52. Koizumi J (1974) Glycogen in the central nervous system. Prog Histochem Cytochem 6:1–37

    CAS  Google Scholar 

  53. Phelps CH (1975) An ultrastructural study of methionine sulphoximine-induced glycogen accumulation in astrocytes of the mouse cerebral cortex. J Neurocytol 4:479–490

    CAS  PubMed  Google Scholar 

  54. Gjedde, A (1993) Relationship of unidirectional and net fluxes of glucose across the blood brain barrier. Personal Communication

    Google Scholar 

  55. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    CAS  PubMed  Google Scholar 

  56. Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? [Review] [66 refs]. Trends Neurosci 24:573–578

    CAS  PubMed  Google Scholar 

  57. Chen Y, Swanson RA (2003) Astrocytes and brain injury. [Review] [184 refs]. J Cereb Blood Flow Metab 23:137–149

    PubMed  Google Scholar 

  58. Leão AAP (1944) Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396

    Google Scholar 

  59. Lauritzen M, Skyhoj OT, Lassen NA, Paulson OB (1983) Changes in regional cerebral blood flow during the course of classic migraine attacks. Ann Neurol 13:633–641

    CAS  PubMed  Google Scholar 

  60. Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395–398

    CAS  PubMed  Google Scholar 

  61. Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. [Review] [373 refs]. J Cereb Blood Flow Metab 20:1011–1032

    CAS  PubMed  Google Scholar 

  62. Koistinaho J, Pasonen S, Yrjanheikki J, Chan PH (1999) Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 30:114–119

    CAS  PubMed  Google Scholar 

  63. Rangel YM, Kariko K, Harris VA, Duvall ME, Welsh FA (2001) Dose-dependent induction of mRNAs encoding brain-derived neurotrophic factor and heat-shock protein-72 after cortical spreading depression in the rat. Brain Res Molecul Brain Res 88:103–112

    CAS  Google Scholar 

  64. Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    CAS  PubMed  Google Scholar 

  65. Nowak TS, Kiessling M (1999) Reprogramming of gene expression after ischemia. In: Walz W (ed) Cerebral ischemia: molecular and cellular patho-physiology. Totowa, Humana Press, NJ, p 145–216

    Google Scholar 

  66. Rothwell NJ, Relton JK (1993) Involvement of interleukin-1 and lipocortin-1 in ischaemic brain damage. Cerebrovasc Brain Metab Rev 5:178–198

    CAS  PubMed  Google Scholar 

  67. Szaflarski J, Burtrum D, Silverstein FS (1995) Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26:1093–1100

    CAS  PubMed  Google Scholar 

  68. Betz AL, Schielke GP, Yang GY (1996) Interleukin-1 in cerebral ischemia. Keio J Med 45:230–237

    CAS  PubMed  Google Scholar 

  69. Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2001) Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab 21:218–225

    CAS  PubMed  Google Scholar 

  70. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1 beta promotes repair of the CNS. J Neurosci 21:7046–7052

    CAS  PubMed  Google Scholar 

  71. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P (2000) Interleukin-1beta — induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20:8153–8159

    CAS  PubMed  Google Scholar 

  72. Duong TQ, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJ, Neil JJ (2001) Extracellular apparent diffusion in rat brain. Magn Res Med 45:801–810

    CAS  Google Scholar 

  73. Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727

    CAS  PubMed  Google Scholar 

  74. Kariko K, Harris VA, Rangel Y, Duvall ME, Welsh FA (1998) Effect of cortical spreading depression on the levels of mRNA coding for putative neuroprotective proteins in rat brain. J Cereb Blood Flow Metab 18:1308–1315

    CAS  PubMed  Google Scholar 

  75. Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16:1137–1142

    CAS  PubMed  Google Scholar 

  76. Wang X, Li X, Currie RW, Willette RN, Barone FC, Feuerstein GZ (2000) Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1beta mRNA in ischemic brain tolerance. J Neurosci Res 59:238–246

    CAS  PubMed  Google Scholar 

  77. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappa-B is a key event in brain tolerance. J Neurosci 21:4668–4677

    CAS  PubMed  Google Scholar 

  78. Marshall WH, Essig CF, Dubroff SJ (1951) Relation of temperature of cerebral cortex to spreading depression of Leão. J Neurophysiol 14:153–166

    CAS  PubMed  Google Scholar 

  79. Strong AJ, Smith SE, Whittington DJ, Meldrum BS, Parsons AA, Krupinski J et al (2000) Factors influencing the frequency of fluorescence transients as markers of peri-infarct depolarizations in focal cerebral ischemia. Stroke 31(1):214–222

    CAS  PubMed  Google Scholar 

  80. Tower DB, Young OM (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 20:269–278

    CAS  PubMed  Google Scholar 

  81. Czeh G, Somjen GG (1990) Hypoxic failure of synaptic transmission in the isolated spinal cord, and the effects of divalent cations. Brain Res 527:224–233

    CAS  PubMed  Google Scholar 

  82. Curtis DR, Watkins JC (1961) Analogues of glutamic and gammaaminobutyric acids having potent actions on mammalian neurones. Nature 191:1010–1011

    CAS  PubMed  Google Scholar 

  83. Gorelova NA, Koroleva VI, Amemori T, Pavlik V, Bures J (1987) Ketamine blockade of cortical spreading depression in rats. Electroencephalography Clin Neurophysiol 66:440–447

    CAS  Google Scholar 

  84. Lauritzen M, Rice ME, Okada Y, Nicholson C (1988) Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res 475:317–327

    CAS  PubMed  Google Scholar 

  85. Gill R, Andine P, Hillered L, Persson L, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371–379

    CAS  PubMed  Google Scholar 

  86. Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12:727–733

    CAS  PubMed  Google Scholar 

  87. Leão AAP, Morison RS (1945) Propagation of spreading cortical depression. J Neurophysiol 8:33–45

    Google Scholar 

  88. Ophoff RA, Terwindt GM, Vergouwe MN, Frants RR, Ferrari MD (1997) Wolff Award 1997. Involvement of a Ca2+ channel gene in familial hemiplegic migraine and migraine with and without aura. Dutch Migraine Genetics Research Group. [Review] [43 refs]. Headache 37:479–485

    CAS  PubMed  Google Scholar 

  89. Welch KM, Ramadan NM (1995) Mitochondria, magnesium and migraine. J Neurol Sci 134:9–14

    CAS  PubMed  Google Scholar 

  90. Strong AJ, Venables GS, Gibson G (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:86–96

    CAS  PubMed  Google Scholar 

  91. Strong AJ, Tomlinson BE, Venables GS, Gibson G, Hardy JA (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97–108

    CAS  PubMed  Google Scholar 

  92. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740:268–274

    CAS  PubMed  Google Scholar 

  93. Strong AJ, Harland SP, Meldrum BS, Whittington DJ (1996) The use of in vivo fluorescence image sequences to indicate the occurrence and propagation of transient focal depolarizations in cerebral ischemia. J Cereb Blood Flow Metab 16:367–377

    CAS  PubMed  Google Scholar 

  94. Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4:709–711

    CAS  PubMed  Google Scholar 

  95. Busch E, Gyngell ML, Eis M, Hoehn Berlage M, Hossmann KA (1996) Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 16:1090–1099

    CAS  PubMed  Google Scholar 

  96. Lassen NA, Vorstrup S (1984) Ischaemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15: 755–756, 15:755

    CAS  PubMed  Google Scholar 

  97. Mies G, Kohno K, Hossmann KA (1994) Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 14:802–807

    CAS  PubMed  Google Scholar 

  98. Buchan AM, Xue D, Huang ZG, Smith KH, Lesiuk H (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2:473–476

    CAS  PubMed  Google Scholar 

  99. Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229

    CAS  PubMed  Google Scholar 

  100. Nedergaard M, Cooper AJ, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J Neurobiol 28:433–444

    CAS  PubMed  Google Scholar 

  101. Ginsberg MD, Reivich M, Giandomenico A, Greenberg JH (1977) Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology 27:1042–1048

    CAS  PubMed  Google Scholar 

  102. Nedergaard M, Astrup J (1986) Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 6:607–615

    CAS  PubMed  Google Scholar 

  103. Scott JF, Robinson GM, French JM, O’Connell JE, Alberti KG, Gray CS (1999) Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST). Stroke 30:793–799

    CAS  PubMed  Google Scholar 

  104. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M et al (2001) Intensive insulin therapy in the critically ill patients. [comment]. New Engl J Med 345:1359–1367

    PubMed  Google Scholar 

  105. Strong AJ, Wong C-K, Jones DA, Parkin M, Boutelle MG (2001) Detection and analysis of peri-infarct glucose and lactate transients with rapid-sampling microdialysis. J Cereb Blood Flow Metab 21(S1):86 (abstract)

    Google Scholar 

  106. Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE, Strong AJ, Boutelle MG (2002) On-line neurochemical monitoring in Neurointensive care: enzyme-based assay for the simultaneous, continuous monitoring of glucose and lactate from critical care patients. J Electroanalytical Chem 238:243–252

    Google Scholar 

  107. Hopwood SE, Boutelle MG, Parkin MC, Bezzina EL, Strong AJ (2003) Rapid sampling of glucose and lactate using on-line microdialysis in a model of focal cerebral ischaemia. (Abstract) J Cereb Blood Flow Metab [Suppl] 1:115

    Google Scholar 

  108. Milner PM (1958) Notes on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroenceph Clin Neurophysiol 10:705

    CAS  Google Scholar 

  109. Sramka M, Brozek G, Bures J, Nadvornik P (1977) Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl Neurophysiol 40:48–61

    PubMed  Google Scholar 

  110. Hadjikhani N, Sanchez DR, Wu O, Schwartz D, Bakker D, Fischl B et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Nat Acad Sci USA 98:4687–4692

    CAS  PubMed  Google Scholar 

  111. Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339

    Google Scholar 

  112. Woods RP, Iacoboni M, Mazziotta JC (1994) Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache [see comments]. N Engl J Med 331:1689–1692

    CAS  PubMed  Google Scholar 

  113. Gardner-Medwin AR, van Bruggen N, Williams SR, Ahier RG (1994) Magnetic resonance imaging of propagating waves of spreading depression in the anaesthetised rat. J Cereb Blood Flow Metab 14:7–11

    CAS  PubMed  Google Scholar 

  114. Crowell GF, Stump DA, Biller J, McHenry LC Jr, Toole JF (1984) The transient global amnesia-migraine connection. Arch Neurol 41:75–79

    CAS  PubMed  Google Scholar 

  115. Tanabe H, Hashikawa K, Nakagawa Y, Ikeda M, Yamamoto H, Harada K et al (1991) Memory loss due to transient hypoperfusion in the medial temporal lobes including hippocampus. [erratum appears in Acta Neurol Scand 1991 Nov;84(5):463]. Acta Neurol Scand 84:22–27

    CAS  PubMed  Google Scholar 

  116. Strupp M, Bruning R, Wu RH, Deimling M, Reiser M, Brandt T (1998) Diffusion-weighted MRI in transient global amnesia: elevated signal intensity in the left mesial temporal lobe in 7 of 10 patients. [comment]. Ann Neurol 43:164–170

    CAS  PubMed  Google Scholar 

  117. Avis HH, Carlton PL (1968) Retrograde amnesia produced by hippocampal spreading depression. Science 161:73–75

    CAS  PubMed  Google Scholar 

  118. Kapp BS, Schneider AM (1971) Selective recovery from retrograde amnesia produced by hippocampal spreading depression. Science 173:1149–1151

    CAS  PubMed  Google Scholar 

  119. Walker AE, Kollros JJ, Case TJ (1944) The physiological basis of concussion. J Neurosurg 1:103–116

    Google Scholar 

  120. Povlishock JT (2000) Pathophysiology of neural injury: therapeutic opportunities and challenges. [Review] [37 refs]. Clin Neurosurg 46:113–126

    CAS  PubMed  Google Scholar 

  121. Sahuquillo J, Poca MA (2002) Diffuse axonal injury after head trauma. A review. [Review] [151 refs]. Advances & Technical Standards in Neurosurgery 27:23–86

    Google Scholar 

  122. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:685–693

    CAS  PubMed  Google Scholar 

  123. von Oettingen G, Bergholt B, Gyldensted C, Astrup J (2002) Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50:781–788

    PubMed  Google Scholar 

  124. Takahashi H, Manaka S, Sano K (1981) Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg 55:708–717

    CAS  PubMed  Google Scholar 

  125. Kubota M, Nakamura T, Sunami K, Ozawa Y, Namba H, Yamaura A et al (1989) Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity. Neurosurg Rev 12[Suppl] 1:393–399

    PubMed  Google Scholar 

  126. Sunami K, Nakamura T, Ozawa Y, Kubota M, Namba H, Yamaura A (1989) Hypermetabolic state following experimental head injury. Neurosurg Rev 12[Suppl] 1:400–411

    PubMed  Google Scholar 

  127. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    CAS  PubMed  Google Scholar 

  128. Mun-Bryce S, Wilkerson AC, Papuashvili N, Okada YC (2001) Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res 888:248–255

    CAS  PubMed  Google Scholar 

  129. Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP (1991) Dynamic changes in local cerebral glucose utilization following cerebral contusion in rats: evidence of a hyper-and subsequent hypometabolic state. Brain Res 561:106–119

    CAS  PubMed  Google Scholar 

  130. Nilsson B, Nordstrom C-H (1977) Experimental head injury in the rat. Part 3: cerebral blood flow and oxygen consumption after concussive impact acceleration. J Neurosurg 47:262–273

    CAS  PubMed  Google Scholar 

  131. Nilsson B, Ponten U (1977) Experimental head injury in the rat. Part 2: regional brain energy metabolism in concussive trauma. J Neurosurg 47:252–261

    CAS  PubMed  Google Scholar 

  132. Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ (1993) Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13:183–192

    CAS  PubMed  Google Scholar 

  133. Alarcon G, Binnie CD, Elwes RD, Polkey CE (1995) Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalography Clin Neurophysiol 94:326–337

    CAS  Google Scholar 

  134. Back T, Hirsch JG, Szabo K, Gass A (2000) Failure to demonstrate peri-infarct depolarizations by repetitive MR diffusion imaging in acute human stroke. Stroke (Online) 31:2901–2906

    CAS  Google Scholar 

  135. Dreier JP, Korner K, Ebert N, Gorner A, Rubin I, Back T et al (1998) Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab 18:978–990

    CAS  PubMed  Google Scholar 

  136. Wolf T, Lindauer U, Reuter U, Back T, Villringer A, Einhaupl K et al (1997) Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 17:950–954

    CAS  PubMed  Google Scholar 

  137. Dirnagl U, Obrig H, von Pannwitz W, Kohl M, Kerskens CM, Doge C, Lindauer U, Wolf T, Villringer A (2000) Cerebral blood flow, hemoglobin oxygenation, and water diffusion changes during stroke: fingerprinting with near-infrared spectroscopy and MRI. In: Fukuuchi Y, Tomita M, Koto A (eds) 6:232–240. 2001. Springer, Tokyo. Keio University, Symposia for Life Science and Medicine: Ischemic Blood Flow in the Brain

    Google Scholar 

  138. Volterra A, Magistretti PJ, Haydon PG (2003) The Tripartite Synapse: glia in synaptic transmission. Oxford University Press, New York

    Google Scholar 

  139. Kohl M, Lindauer U, Dirnagl U, Villringer A (1998) Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats. Optics Lett 23:555–557

    CAS  Google Scholar 

  140. Anderson CM, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trend Neurosci 26(7):340–344

    CAS  PubMed  Google Scholar 

  141. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signalling is central to the dynamic control of brain microcirculation. Nature Neurosci 6(1):43–50

    CAS  PubMed  Google Scholar 

  142. Parkin MC, Hopwood SE, Strong AJ, Boutelle MG (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Anal Chem 22(9):487–497

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this chapter

Cite this chapter

Strong, A.J., Dardis, R. (2005). Depolarisation Phenomena in Traumatic and Ischaemic Brain Injury. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 30. Springer, Vienna. https://doi.org/10.1007/3-211-27208-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-211-27208-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21403-9

  • Online ISBN: 978-3-211-27208-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics