Skip to main content

Developmental Regulation of the β-Globin Gene Locus

  • Chapter
Book cover Epigenetics and Chromatin

Abstract

The β-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, trans-acting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad K, Henikoff S (2002a) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484

    Article  PubMed  Google Scholar 

  • Ahmad K, Henikoff S (2002b) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200

    Google Scholar 

  • Alami R, Bender MA, Feng YQ, Fiering SN, Hug BA, Ley TJ, Groudine M, Bouhassira EE (2000) Deletions within the mouse beta-globin locus control region preferentially reduce beta(min) globin gene expression. Genomics 63(3):417–424

    Article  PubMed  Google Scholar 

  • Antoniou M, deBoer E, Habets G, Grosveld F (1988) The human beta-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. EMBO J 7(2):377–384

    PubMed  Google Scholar 

  • Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ (1997) Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 11(19):2494–2509

    PubMed  Google Scholar 

  • Behringer RR, Hammer RE, Brinster RL, Palmiter RD, Townes TM (1987) Two 3′ sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. Proc Natl Acad Sci USA 84(20):7056–7060

    PubMed  Google Scholar 

  • Bell AC, Felsenfeld G (1999) Stopped at the border: boundaries and insulators. Curr Opin Genet Dev 9(2):191–198

    Article  PubMed  Google Scholar 

  • Bender MA, Reik A, Close J, Telling A, Epner E, Fiering S, Hardison R, Groudine M (1998) Description and targeted deletion of 5′ hypersensitive site 5 and 6 of the mouse beta-globin locus control region. Blood 92(11):4394–4403

    PubMed  Google Scholar 

  • Bender MA, Roach JN, Halow J, Close J, Alami R, Bouhassira EE, Groudine M, Fiering SN (2001) Targeted deletion of 5′HS1 and 5′HS4 of the beta-globin locus control region reveals additive activity of the DNaseI hypersensitive sites. Blood 98(7):2022–2027

    Article  PubMed  Google Scholar 

  • Blom van Assendelft G, Hanscombe O, Grosveld F, Greaves DR (1989) The beta-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell 56(6):969–977

    Article  PubMed  Google Scholar 

  • Brotherton TW, Chui DH, Gauldie J, Patterson M (1979) Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA 76(6):2853–2857

    PubMed  Google Scholar 

  • Brown KE, Amoils S, Horn JM, Buckle VJ, Higgs DR, Merkenschlager M, Fisher AG (2001) Expression of alpha-and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3(6):602–606

    Article  PubMed  Google Scholar 

  • Bulger M, van Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M, von Doorninck JH (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA 96(9):5129–5134

    Article  PubMed  Google Scholar 

  • Bulger M, Bender MA, van Doorninck JH, Wertman B, Farrell CM, Felsenfeld G, Groudine M, Hardison R (2000) Comparative structural and functional analysis of the olfactory receptor genes flanking the human and mouse beta-globin gene clusters. Proc Natl Acad Sci USA 97(26):14560–14565

    Article  PubMed  Google Scholar 

  • Bulger M, Schubeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC, Groudine M (2003) A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse beta-globin locus. Mol Cell Biol 23(15):5234–5244

    Article  PubMed  Google Scholar 

  • Bungert J, Dave U, Lim KC, Lieuw KH, Shavit JA, Liu Q, Engel JD (1995) Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9(24):3083–3096

    PubMed  Google Scholar 

  • Bungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD (1999) Hypersensitive site 2 specifies a unique function within the human beta-globin locus control region to stimulate globin gene transcription. Mol Cell Biol 19(4):3062–3072

    PubMed  Google Scholar 

  • Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626

    Article  PubMed  Google Scholar 

  • Chada K, Magram J, Costantini F (1986) An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319(6055):685–689

    PubMed  Google Scholar 

  • Collins FS, Weissman SM (1984) The molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol 31:315–462

    PubMed  Google Scholar 

  • Collis P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9(1):233–240

    PubMed  Google Scholar 

  • Curtin P, Pirastu M, Kan YW, Gobert-Jones JA, Stephens AD, Lehmann H (1985) A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. J Clin Invest 76(4):1554–1558

    PubMed  Google Scholar 

  • Curtin PT, Kan YW (1988) The inactive beta globin gene on a gamma delta beta thalassemia chromosome has a normal structure and functions normally in vitro. Blood 71(3):766–770

    PubMed  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  PubMed  Google Scholar 

  • Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F (1997) The effect of distance on long-range chromatin interactions. Mol Cell 1(1):131–139

    Article  PubMed  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4(6):983–993

    Article  PubMed  Google Scholar 

  • Driscoll MC, Dobkin CS, Alter BP (1989) Gamma delta beta-thalassemia due to a de novo mutation deleting the 5′ beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci USA 86(19):7470–7474

    PubMed  Google Scholar 

  • Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N, Philipsen S, Grosveld F (1996) A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region. EMBO J 15(3):562–568

    PubMed  Google Scholar 

  • Enver T, Raich N, Ebens AJ, Papayannopoulou T, Costantini F, Stamatoyannopoulos G (1990) Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344(6264):309–313

    Article  PubMed  Google Scholar 

  • Epner E, Reik A, Cimbora D, Telling A, Bender MA, Fiering S, Enver T, Martin DI, Kennedy M, Keller G, Groudine M (1998) The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell 2(4):447–455

    Article  PubMed  Google Scholar 

  • Farrell CM, West AG, Felsenfeld G (2002) Conserved CTCF insulator elements flank the mouse and human beta-globin loci. Mol Cell Biol 22(11):3820–3831

    Article  PubMed  Google Scholar 

  • Farrell CM, Grinberg A, Huang SP, Chen D, Pichel JG, Westphal H, Felsenfeld G (2000) A large upstream region is not necessary for gene expression or hypersensitive site formation at the mouse beta-globin locus. Proc Natl Acad Sci USA 97(26):14554–14559

    Article  PubMed  Google Scholar 

  • Felsenfeld G (1993) Chromatin structure and the expression of globin-encoding genes. Gene 135(1–2):119–124

    Article  PubMed  Google Scholar 

  • Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271(5252):1123–1125

    PubMed  Google Scholar 

  • Fiering S, Epner E, Robinson K, Zhuang Y, Telling A, Hu M, Martin DI, Enver T, Ley TJ, Groudine M (1995) Targeted deletion of 5′HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev 9(18):2203–2213

    PubMed  Google Scholar 

  • Forrester WC, Thompson C, Elder JT, Groudine M (1986) A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc Natl Acad Sci USA 83(5):1359–1363

    PubMed  Google Scholar 

  • Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M (1987) Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 15(24):10159–10177

    PubMed  Google Scholar 

  • Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4(10):1637–1649

    PubMed  Google Scholar 

  • Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH (2000) Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA 97(26):14494–14499

    Article  PubMed  Google Scholar 

  • Fraser P, Grosveld F (1998) Locus control regions, chromatin activation and transcription. Curr Opin Cell Biol 10(3):361–365

    Article  PubMed  Google Scholar 

  • Fraser P, Hurst J, Collis P, Grosveld F (1990) DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. Nucleic Acids Res 18(12):3503–3508

    PubMed  Google Scholar 

  • Fraser P, Pruzina S, Antoniou M, Grosveld F (1993) Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev 7(1):106–113

    PubMed  Google Scholar 

  • Fraser P, Gribnau J, Trimborn T (1998) Mechanisms of developmental regulation in globin loci. Curr Opin Hematol 5(2):139–144

    PubMed  Google Scholar 

  • Friend C, Patuleia MC, de Harven E (1966) Erythrocytic maturation in vitro of murine (Friend) virus-induced leukemic cells. Natl Cancer Inst Monogr 22:505–522

    PubMed  Google Scholar 

  • Furukawa T, Navas PA, Josephson BM, Peterson KR, Papayannopoulou T, Stamatoy-annopoulos G (1995) Coexpression of epsilon, G gamma and A gamma globin mRNA in embryonic red blood cells from a single copy beta-YAC transgenic mouse. Blood Cells Mol Dis 21(2):168–178

    Article  PubMed  Google Scholar 

  • Goodwin AJ, McInerney JM, Glander MA, Pomerantz O, Lowrey CH (2001) In vivo formation of a human beta-globin locus control region core element requires binding sites for multiple factors including GATA-1, NF-E2, erythroid Kruppel-like factor, and Sp1. J Biol Chem 276(29):26883–26892

    Article  PubMed  Google Scholar 

  • Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P (2000) Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 5(2):377–386

    Article  PubMed  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51(6):975–985

    Article  PubMed  Google Scholar 

  • Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N, Grosveld F (1991) Importance of globin gene order for correct developmental expression. Genes Dev 5(8):1387–1394

    PubMed  Google Scholar 

  • Harteveld CL, Osborne CS, Peters M, van der Werf S, Plug R, Fraser P, Giordano PC (2003) Novel 112 kb (epsilon G gamma A gamma) delta beta-thalassaemia deletion in a Dutch family. Br J Haematol 122(5):855–858

    Article  PubMed  Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J 13(8):1823–1830

    PubMed  Google Scholar 

  • Hug BA, Wesselschmidt RL, Fiering S, Bender MA, Epner E, Groudine M, Ley TJ (1996) Analysis of mice containing a targeted deletion of beta-globin locus control region 5′ hypersensitive site 3. Mol Cell Biol 16(6):2906–2912

    PubMed  Google Scholar 

  • Hunt JA (1974) Rate of synthesis and half-life of globin messenger ribonucleic acid. Rate of synthesis of globin messenger ribonucleic acid calculated from data of cell haemoglobin content. Biochem J 138(3):499–510

    PubMed  Google Scholar 

  • Imaizumi T, Diggelmann H, Scherrer K (1973) Demonstration of globin messenger sequences in giant nuclear precursors of messenger RNA of avian erythroblasts. Proc Natl Acad Sci USA 70(4):1122–1126

    PubMed  Google Scholar 

  • Jackson JD, Petrykowska H, Philipsen S, Miller W, Hardison R (1996) Role of DNA sequences outside the cores of DNase hypersensitive sites (HSs) in functions of the beta-globin locus control region. Domain opening and synergism between HS2 and HS3. J Biol Chem 271(20):11871–11878

    Article  PubMed  Google Scholar 

  • Kioussis D, Festenstein R (1997) Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr Opin Genet Dev 7(5):614–619

    Article  PubMed  Google Scholar 

  • Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld F (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666

    Article  PubMed  Google Scholar 

  • Kmita M, Duboule D (2003) Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631):331–333

    Article  PubMed  Google Scholar 

  • Kollias G, Wrighton N, Hurst J, Grosveld F (1986) Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46(1):89–94

    Article  PubMed  Google Scholar 

  • Kollias G, Hurst J, deBoer E, Grosveld F (1987) The human beta-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res 15(14):5739–5747

    PubMed  Google Scholar 

  • Kong S, Bohl D, Li C, Tuan D (1997) Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 17(7):3955–3965

    PubMed  Google Scholar 

  • Kulozik AE, Yarwood N, Jones RW (1988) The Corfu delta beta zero thalassemia: a small deletion acts at a distance to selectively abolish beta globin gene expression. Blood 71(2):457–462

    PubMed  Google Scholar 

  • Leach KM, Nightingale K, Igarashi K, Levings PP, Engel JD, Becker PB, Bungert J (2001) Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly. Mol Cell Biol 21(8):2629–2640

    Article  PubMed  Google Scholar 

  • Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G (2001a) Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293(5539):2453–2455

    Article  PubMed  Google Scholar 

  • Litt MD, Simpson M, Recillas-Targa F, Prioleau MN, Felsenfeld G (2001b) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J 20(9):2224–2235

    Article  PubMed  Google Scholar 

  • Long Q, Bengra C, Li C, Kutlar F, Tuan D (1998) A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human beta-globin locus control region. Genomics 54(3):542–555

    Article  PubMed  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157(4):579–589

    Article  PubMed  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763

    Article  PubMed  Google Scholar 

  • Marks PA, Rifkind RA (1978) Erythroleukemic differentiation. Annu Rev Biochem 47:419–448

    Article  PubMed  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101(6):1525–1530

    Article  PubMed  Google Scholar 

  • Milot E, Strouboulis J, Trimborn T, Wijgerde M, de Boer E, Langeveld A, Tan-Un K, Vergeer W, Yannoutsos N, Grosveld F, Fraser P (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87(1):105–114

    Article  PubMed  Google Scholar 

  • Moon AM, Ley TJ (1991) Functional properties of the beta-globin locus control region in K562 erythroleukemia cells. Blood 77(10):2272–2284

    PubMed  Google Scholar 

  • Mutskov VJ, Farrell CM, Wade PA, Wolffe AP, Felsenfeld G (2002) The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev 16(12):1540–1554

    Article  PubMed  Google Scholar 

  • Navas PA, Peterson KR, Li Q, Skarpidi E, Rohde A, Shaw SE, Clegg CH, Asano H, Stamatoyannopoulos G (1998) Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol Cell Biol 18(7):4188–4196

    PubMed  Google Scholar 

  • Navas PA, Peterson KR, Li Q, McArthur M, Stamatoyannopoulos G (2001) The 5′HS4 core element of the human beta-globin locus control region is required for high-level globin gene expression in definitive but not in primitive erythropoiesis. J Mol Biol 312(1):17–26

    Article  PubMed  Google Scholar 

  • Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G (2003) Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 12(22):2941–2948

    Article  PubMed  Google Scholar 

  • Orphanides G, Reinberg D (2000) RNA polymerase II elongation through chromatin. Nature 407(6803):471–475

    Article  PubMed  Google Scholar 

  • Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194

    Article  PubMed  Google Scholar 

  • Peterson KR, Clegg CH, Huxley C, Josephson BM, Haugen HS, Furukawa T, Stamatoyannopoulos G (1993) Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci USA 90(16):7593–7597

    PubMed  Google Scholar 

  • Peterson KR, Clegg CH, Navas PA, Norton EJ, Kimbrough TG, Stamatoyannopoulos G (1996) Effect of deletion of 5′HS3 or 5′HS2 of the human beta-globin locus control region on the developmental regulation of globin gene expression in beta-globin locus yeast artificial chromosome transgenic mice. Proc Natl Acad Sci USA 93(13):6605–6609

    Article  PubMed  Google Scholar 

  • Philipsen S, Talbot D, Fraser P, Grosveld F (1990) The beta-globin dominant control region: hypersensitive site 2. EMBO J 9(7):2159–2167

    PubMed  Google Scholar 

  • Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a trans-gene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12(18):2852–2862

    PubMed  Google Scholar 

  • Plant KE, Routledge SJ, Proudfoot NJ (2001) Intergenic transcription in the human beta-globin gene cluster. Mol Cell Biol 21(19):6507–6514

    Article  PubMed  Google Scholar 

  • Pope SH, Fibach E, Sun J, Chin K, Rodgers GP (2000) Two-phase liquid culture system models normal human adult erythropoiesis at the molecular level. Eur J Haematol 64(5):292–303

    Article  PubMed  Google Scholar 

  • Prioleau MN, Nony P, Simpson M, Felsenfeld G (1999) An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J 18(14):4035–4048

    Article  PubMed  Google Scholar 

  • Pruzina S, Hanscombe O, Whyatt D, Grosveld F, Philipsen S (1991) Hypersensitive site 4 of the human beta globin locus control region. Nucleic Acids Res 19(7):1413–1419

    PubMed  Google Scholar 

  • Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11(5):513–525

    Article  PubMed  Google Scholar 

  • Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD, West AG, Gaszner M, Felsenfeld G (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 99(10):6883–6888

    Article  PubMed  Google Scholar 

  • Reik A, Telling A, Zitnik G, Cimbora D, Epner E, Groudine M (1998) The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol Cell Biol 18(10):5992–6000

    PubMed  Google Scholar 

  • Routledge SJ, Proudfoot NJ (2002) Definition of transcriptional promoters in the human beta globin locus control region. J Mol Biol 323(4):601–611

    Article  PubMed  Google Scholar 

  • Ryan TM, Behringer RR, Townes TM, Palmiter RD, Brinster RL (1989) High-level erythroid expression of human alpha-globin genes in transgenic mice. Proc Natl Acad Sci USA 86(1):37–41

    PubMed  Google Scholar 

  • Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934):909–913

    Article  PubMed  Google Scholar 

  • Schubeler, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M et al (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14(8):940–950

    PubMed  Google Scholar 

  • Smith RD, Yu J, Seale RL (1984) Chromatin structure of the beta-globin gene family in murine erythroleukemia cells. Biochemistry 23(4):785–790

    Article  PubMed  Google Scholar 

  • Stamatoyannopoulos G, Grosveld F (2001) Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H (eds) The molecular basis of blood diseases. Saunders, Philadelphia, pp 135–182

    Google Scholar 

  • Strauss EC, Orkin SH (1992) In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. Proc Natl Acad Sci USA 89(13):5809–5813

    PubMed  Google Scholar 

  • Strouboulis J, Dillon N, Grosveld F (1992) Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev 6(10):1857–1864

    PubMed  Google Scholar 

  • Studitsky VM, Walter W, Kireeva M, Kashlev M, Felsenfeld G (2004) Chromatin remodeling by RNA polymerases. Trends Biochem Sci 29(3):127–135

    Article  PubMed  Google Scholar 

  • Talbot D, Philipsen S, Fraser P, Grosveld F (1990) Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J 9(7):2169–2177

    PubMed  Google Scholar 

  • Tanimoto K, Liu Q, Bungert J, Engel JD (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature 398(6725):344–348

    Article  PubMed  Google Scholar 

  • Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14(2):166–172

    Article  PubMed  Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465

    Article  PubMed  Google Scholar 

  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4(7):1715–1723

    PubMed  Google Scholar 

  • Trimborn T, Gribnau J, Grosveld F, Fraser P (1999) Mechanisms of developmental control of transcription in the murine alpha-and beta-globin loci. Genes Dev 13(1):112–124

    PubMed  Google Scholar 

  • Tuan D, Solomon W, Li Q, London IM (1985) The ‘beta-like-globin’ gene domain in human erythroid cells. Proc Natl Acad Sci USA 82(19):6384–6388

    PubMed  Google Scholar 

  • Tuan D, Solomon WB, London IM, Lee DP (1989) An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘beta-like globin’ genes. Proc Natl Acad Sci USA 86(8):2554–2558

    PubMed  Google Scholar 

  • Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89(23):11219–11223

    PubMed  Google Scholar 

  • Van der Ploeg LH, Konings A, Oort M, Roos D, Bernini L, Flavell RA (1980) Gamma-beta-thalassaemia studies showing that deletion of the gamma-and delta-genes influences beta-globin gene expression in man. Nature 283(5748):637–642

    Article  PubMed  Google Scholar 

  • Wijgerde M, Grosveld F, Fraser P (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377(6546):209–213

    Article  PubMed  Google Scholar 

  • Wojda U, Noel P, Miller JL (2002) Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation. Blood 99(8):3005–3013

    PubMed  Google Scholar 

  • Wright S, Rosenthal A, Flavell R, Grosveld F (1984) DNA sequences required for regulated expression of beta-globin genes in murine erythroleukemia cells. Cell 38(1):265–273

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakalova, L. et al. (2005). Developmental Regulation of the β-Globin Gene Locus. In: Jeanteur, P. (eds) Epigenetics and Chromatin. Progress in Molecular and Subcellular Biology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27310-7_8

Download citation

Publish with us

Policies and ethics