Skip to main content

Symbiotic Protozoa of Termites

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos WB, Grimstone AV, Rothschild LJ (1979) Structure, protein composition and birefringence of the costa: a motile flagellar root fibre in the flagellate Trichomonas. J Cell Sci 35:139–164

    PubMed  CAS  Google Scholar 

  • Bloodgood RA (1975) Biochemical analysis of axostyle motility. Cytobios 14:101–120

    CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Ann Rev Microbiol 36: 323–343

    Article  CAS  Google Scholar 

  • Breznak JA (1983) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Anderson JM, Rayner ADM, Walton D (eds) Invertebrate microbial interactions. Cambridge University Press, Cambridge, pp 173–203

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Ann Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Brugerolle G (1991) Flagellar and cytoskeletal systems in amitochondriate flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma 164:70–90

    Article  Google Scholar 

  • Brugerolle G (1999) Fine structure of Pseudotrypanosoma giganteum of Porotermes, a trichomonad with a contractile costa. Europ J Protistol 35:121–128

    Google Scholar 

  • Brugerolle G (2000) A microscopical investigation of the genus Foaina, a parabasalid protist symbiotic in termites and phylogenetic considerations. Europ J Protistol 36:20–28

    Google Scholar 

  • Brugerolle G (2001) Morphological characters of spirotrichonymphids: Microjoenia, Spirotrichonymphella and Spirotrichonympha symbionts of the Australian termite Porotermes grandis. Europ J Protistol 37: 103–117

    Google Scholar 

  • Brugerolle G, König H (1999) Ultrastructure and organization of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. J Euk Microbiol 44:303–313

    Google Scholar 

  • Brugerolle G, Lee JJ (2001a) Order Oxymonadida. In: Lee JJ, Leedale GF, Bradbury PC (eds) The Illustrated Guide to the Protozoa, 2d edn, vol II, Society of Protozoologists, Lawrence Kansas, pp 1186–1195

    Google Scholar 

  • Brugerolle G, Lee JJ (2001b) Phylum Parabasalia. In: Lee JJ, Leedale GF, Bradbury PC (eds) The Illustrated Guide to the Protozoa, 2d edn, vol II, Society of Protozoologists, Lawrence Kansas, pp 1196–1250

    Google Scholar 

  • Brugerolle G, Müller M (2000) Amitochondriate flagellates. In: The Flagellates: unity, diversity and evolution. Leadbeater BSC, Green JC (eds) The Systematics Association sp vol, 59, Taylor & Francis, London pp 166–189

    Google Scholar 

  • Brugerolle G, Patterson D (2001) Ultrastructure of Joenina pulchella Grassi, 1917 (Protista, Parabasalia), a reassessment of evolutionary trends in the parabasalids, and a new order Cristamonadida for devescovinid, calonymphid and lophomonad flagellates. Org Divers Evol 1:147–160

    Google Scholar 

  • Brugerolle G, Bordereau C (2004) The flagellates of the termite Hodotermopsis sjoestedti with special reference to Hoplonympha, Holomastigotes and Trichomonoides trypanoides n. comb. Europ J Protistol 40:163–174

    Google Scholar 

  • Brugerolle G, Breunig A, König H (1994) Ultrastructural study of Pentatrichomonoides sp., a trichomonad from Mastotermes darwiniensis. Europ J Protistol 30:372–378

    Google Scholar 

  • Brugerolle G, Da Silva-Neto ID, Pellens R, Grandcolas P (2003) Electron microscopic identification of the intestinal protozoan flagellates of the xylophagous cockroach Parasphaeria boleiriana from Brazil. Parasitol Res 90:249–256

    PubMed  CAS  Google Scholar 

  • Brul S, Stumm CK (1994) Symbionts and organelles in anaerobic protozoa and fungi. TREE 9:319–324

    Google Scholar 

  • Chapman A, Hann A, Linstead D, Lloyd D (1985) Energy-dispersive X-ray microanalysis of membrane-associated inclusions in hydrogenosomes isolated from Trichomonas vaginalis. J Gen Microbiol 131:2933–2939

    PubMed  CAS  Google Scholar 

  • Cleveland, LR (1949) Hormone-induced sexual cyles of flagellates. I. Gametogenesis, fertilization, and meiosis in Trichonympha. J Morphol 85:197–296

    PubMed  CAS  Google Scholar 

  • Cleveland, LR (1966a) Fertilization in Mixotricha. Arch Protistenkd 109:37–38

    Google Scholar 

  • Cleveland, LR (1966b) Fertilization in Deltotrichonympha. Arch Protistenkd 109:15–17

    Google Scholar 

  • Cleveland, LR (1966c) Fertilization in Koruga. Arch Protistenkd 109:24–25

    Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc Roy Soc B 159:668–686

    Article  Google Scholar 

  • Cleveland LR, Cleveland BT (1966) The locomotory waves of Koruga, Deltotrichonympha and Mixotricha. Arch Protistenkd 109:39–63

    Google Scholar 

  • Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci (N S) 17:185–342

    Google Scholar 

  • Cook TJ, Gold RE (2000) Effects of different cellulose sources on the structure of the hindgut flagellate community in Reticulitermes virginicus (Isoptera: Rhinotermitidae). Sociobiology 35:119–130

    Google Scholar 

  • D’Ambrosio U, Dolan M, Wier AM, Margulis L (1999) Devescovinid trichomonad with axostyle-based rotary motor (“Rubberneckia”): Taxonomic assignment as Caduceia versatilis sp. nov. Europ J Protistol 35: 327–337

    CAS  Google Scholar 

  • Dacks JB, Redfield RJ (1998) Phylogenetic placement of Trichonympha. J Euk Microbiol 45:445–447

    PubMed  CAS  Google Scholar 

  • Dacks JB, Silberman JD, Simpson AGB, Moriya S, Kudo T, Ohkuma M, Redfield R (2001) Oxymonad are closely related to the excavate taxon Trimastix. Mol Biol Evol 19:1034–1044

    Google Scholar 

  • Dolan MF (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Dolan MF, d’Ambrosio U, Wier AM, Margulis L (2000a) Surface kinetosomes and disconnected nuclei of a calonymphid: Ultrastructure and evolutionary significance of Snyderella tabogae. Acta Protozool 39: 135–141

    Google Scholar 

  • Dolan MF, Wier AM, Margulis L (2000b) Budding reproduction of a trichomonad with as many as 1000 nuclei in karyomastigonts: Metacoronympha from Incisitermes. Acta Protozool 39:275–280

    Google Scholar 

  • Dyer BD, Khalsa O (1993) Surface bacteria of Streblomastix strix are sensory symbionts. BioSystems 31: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. System Appl Microbiol 22:249–257

    Google Scholar 

  • Gerbod D, Edgcomb VP, Noël C, Delgado-Viscogliosi P, Viscogliosi E (2000) Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences. Int Microbiol 3:165–172

    PubMed  CAS  Google Scholar 

  • Grassé P-P (1952a) Famille des Polymastigidae, Ordre des Pyrsonymphines, Ordre des Oxymonadines. In: Grassé P-P (ed) Traité de Zoologie, I, Masson, Paris, pp 780–823

    Google Scholar 

  • Grassé P-P (1952b) Ordre des Trichomonadines, Ordre des Joeniides, Ordre des Lophomonadines, Ordre des Trichonymphines, Ordre des Spirotrichonymphines. In: Grassé P-P (ed) Traité de Zoologie, I, Masson, Paris, pp 411–962

    Google Scholar 

  • Grassé P-P, Noirot C (1945) La transmission des flagellés symbiotiques et les aliments des termites. Bull Biol France Belg 79:273–292

    Google Scholar 

  • Grimstone AV, Cleveland LR (1965) The fine structure and function of the contractile axostyles of certain flagellates. J Cell Biol 25:387–400

    Google Scholar 

  • Grosovsky BDD, Margulis L (1980) Termite microbial communities. In: Burns RG, Slater JH (eds) Experimental microbial ecology. Blackwell Scientific Publications, Oxford, pp 519–532

    Google Scholar 

  • Gunderson J, Hinkle G, Leipe D, Morrison HG, Stickel SK, Odelson DA, Breznak JA, Nerad TA, Müller M, Sogin ML (1995) Phylogeny of trichomonads inferred from small-subunit rRNA sequences. J Euk Microbiol 42: 411–415

    PubMed  CAS  Google Scholar 

  • Hollande A, Valentin J (1969) Appareil de Golgi, pinocytose, lysosomes, mitochondries, Bactéries symbiotiques, atractophores et pleuromitose chez les Hypermastigines du genre Joenia. Affinités entre Joeniides et Trichomonadines. Protistologica 5:39–86

    Google Scholar 

  • Honigberg BM (1963) Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. J Protozool 10:20–62

    PubMed  CAS  Google Scholar 

  • Hollande A, Carruette-Valentin J (1970) La lignée des Pyrsonymphines et les caractères infrastructuraux communs aux genres Opisthomitus, Oxymonas, Saccinobaculus, Pyrsonympha et Streblomastix. C R Acad Sci Paris ser D, 270:1587–1590

    CAS  Google Scholar 

  • Hollande A, Carruette-Valentin J (1971) Les atractophores, l’induction du fuseau et la division cellulaire chez les Hypermastigines, étude infrastructurale et révision systématique des Trichonymphines et des Spirotrichonymphines. Protistologica 7:5–100

    Google Scholar 

  • Hollande A, Carruette-Valentin J (1972) Le problème du centrosome et la cryptopleuromitose atractophorienne chez Lophomonas striata. Protistologica 8:267–278

    Google Scholar 

  • Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds). Biology of termites, vol II, Academic Press, New York pp 1–36

    Google Scholar 

  • Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociability, symbioses, ecology. Kluwer, The Netherlands, pp 275–288

    Google Scholar 

  • Keeling P (2002) Molecular phylogenetic position of Trichomitopsis termopsidis (Parabasalia) and evidence for Trichomitopsiinae. Europ J Protistol 38:279–286

    Google Scholar 

  • Kitade O, Matsumoto T (1993) Symbiotic protistan faunae of Reticulitermes (Isoptera: Rhinotermitidae) in the Japan Archipelago. Sociobiology 23:135–153

    Google Scholar 

  • König H, Fröhlich J, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiol 6:125–156

    Google Scholar 

  • Kulda J, Nohýnková E, Ludvík, J (1986) Basic structure and function of the trichomonad cell. Acta Univ Carol Biol 30:181–198

    Google Scholar 

  • Lingle WL, Salisbury JL (1997) Centrin and the cytoskeleton of the protist Holomastigotoides. Cell Motil Cytoskeleton 33:298–323

    Google Scholar 

  • Machemer H (1974) Ciliary activity and metachronism in Protozoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, New York, pp 199–286

    Google Scholar 

  • Mannesmann R (1972) Relationship between different wood species as a termite food source and the reproduction rate of termite symbionts. Z ang Ent 72:116–128

    Google Scholar 

  • Mannesmann R (1974) Qualitative und quantitative Untersuchung der Darmfaunen mehrerer Populationen von Reticulitermes (Isopt., Rhinotermitidae). Z ang Ent 76:86–97

    Google Scholar 

  • Mauldin JK, Carter FL, Rich NM (1981) Protozoan populations of Reticulitermes flavipes (Kollar) exposed to heartwood blocks of 21 American species. Material und Organismen 16:15–28

    Google Scholar 

  • May E (1941) The behavior of the intestinal protozoa of termites at the time of the last ecdysis. Trans Am Microscop Soc 60:281–292

    Google Scholar 

  • McIntosh, JR (1973) The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles. J Cell Biol 56:324–339

    PubMed  CAS  Google Scholar 

  • Mooseker MS, Tilney LG (1973) Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J Cell Biol 56:13–26

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Dacks JB, Takagi A, Noda S, Ohkuma M, Doolittle WF, Kudo T (2003) Molecular evolution of three oxymonad genera; Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol 49:190–197

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Ann Rev Microbiol 42:465–488

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Müller M (1997) Evolutionary origins of trichomonad hydrogenosomes. Parasitology Today 13:166–167

    PubMed  Google Scholar 

  • O’Brien RW, Slaytor M (1982) Role of microorganisms in the metabolism of termites. Austr J Biol Sci 35:239–262

    CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985a) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    PubMed  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985b) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Ohtoko K, Iida T, Tokura M, Moriya S, Usami R, Horikoshi K, Kudo T (2000) Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47:249–259

    Article  PubMed  CAS  Google Scholar 

  • Radek R (1994) Monocercomonoides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkd 144:373–382

    Google Scholar 

  • Radek R (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. Europ J Protistol 33:361–374

    Google Scholar 

  • Radek R, Tischendorf G (1999) Bacterial adhesion to different termite flagellates: ultrastructural and functional evidence for distinct molecular attachment modes. Protoplasma 207:43–53

    Article  CAS  Google Scholar 

  • Radek R, Hausmann K, Breunig A (1992) Ectobiotic and endobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozool 31:93–107

    Google Scholar 

  • Radek R, Rösel J, Hausmann K (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193:105–122

    Article  Google Scholar 

  • Rösel J, Radek R, Hausmann K (1996) Ultrastructure of the trichomonad flagellate Stephanonympha nelumbium. J Euk Microbiol 42:505–511

    Google Scholar 

  • Rother A, Radek R, Hausmann K (1999) Characterization of surface structures covering flagellates of the family Oxymonadidae and ultrastructure of two oxymonad species Microrhopalodina multinucleata and Oxymonas sp Europ J Protistol 25:1–16

    Google Scholar 

  • Simpson AGB, Radek R, Dacks JB, O’Kelly CJ (2002) How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 49:239–248

    Article  PubMed  Google Scholar 

  • Smith HE, Arnott HJ (1974) Epi-and endobiotic bacteria associated with Pyrsonympha vertens, a symbiotic protozoon of the termite Reticulitermes flavipes. Amer Micros Soc 93:180–194

    CAS  Google Scholar 

  • Tamm SL (1976) Rotary movement and fluid membranes in termite flagellates. J Cell Sci 20:619–639

    PubMed  CAS  Google Scholar 

  • Tamm SL (1978) Laser microbeam study of a rotary motor in termite flagellates. J Cell Biol 78:76–92

    Article  PubMed  CAS  Google Scholar 

  • Tamm SL (1979) Membrane movement and fluidity during rotational motility of a termite flagellate. J Cell Biol 80:141–149

    Article  PubMed  CAS  Google Scholar 

  • Tamm SL (1980) The ultrastructure of prokaryotic-eukaryotic cell junctions. J Cell Sci 44:335–352

    PubMed  CAS  Google Scholar 

  • Tamm SL (1999) Locomotory waves of Koruga and Deltotrichonympha: Flagella wag the cell. Cell Motil Cytoskeleton 43:145–158

    Article  PubMed  CAS  Google Scholar 

  • Tamm S, Tamm SL (1973) The fine structure of the centriolar apparatus and associated structures in the flagellates Deltotrichonympha and Koruga. I. Interphase. J Protozool 20:230–245

    Google Scholar 

  • Viscogliosi E, Brugerolle G (1993) Cytoskeleton in trichomonads. I. Immunological and biochemical comparative studies of costal proteins in the genus Tritrichomonas. Europ J Protistol 29:160–170

    Google Scholar 

  • Viscogliosi E, Brugerolle G (1994) Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots. Cell Motil Cytoskeleton 29:82–93

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M., Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Europ J Protistol 39:11–23

    Article  Google Scholar 

  • Woodrum DT, Linck RW (1980) Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function. J Cell Biol 87:404–414

    Article  PubMed  CAS  Google Scholar 

  • Yamin MA (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J Protozool 25:535–538

    Google Scholar 

  • Yamin MA (1979) Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-eating roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4:1–120

    Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59

    CAS  PubMed  Google Scholar 

  • Yamin MA, Trager W (1979) Cellulolytic activity of an axenically-cultivated termite flagellate Trichomitopsis termopsidis. J Gen Microbiol 113:417–420

    CAS  Google Scholar 

  • Yoshimura T (1995) Contribution of the protozoan fauna to nutritional physiology of the lower termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Research 82:68–129

    Google Scholar 

  • Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). I. Effect of degree of polymerization of cellulose. Mokuzai Gakkaishi 39:221–226

    CAS  Google Scholar 

  • Yoshimura T, Tsunoda K, Takahashi M (1994) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). IV. Seasonal changes of the protozoan fauna and its relation to wood-attacking activity. Mokuzai Gakkaishi 40:853–859

    Google Scholar 

  • Yoshimura T, Fujina T, Itoh T, Tsunoda K, Takahashi M (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50:99–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brugerolle, G., Radek, R. (2006). Symbiotic Protozoa of Termites. In: König, H., Varma, A. (eds) Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28185-1_10

Download citation

Publish with us

Policies and ethics