Skip to main content

Regulation of the Dopamine Transporter by Phosphorylation

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

The dopamine transporter (DAT) is a neuronal phosphoprotein and target for psychoactive drugs that plays a critical role in terminating dopaminergic transmission by reuptake of dopamine from the synaptic space. Control of DAT activity and plasma membrane expression are therefore central to drug actions and the spatial and temporal regulation of synaptic dopamine levels. DATs rapidly traffic between the plasmamembrane and endosomal compartments in both constitutive and protein kinase C-dependent manners. Kinase activators, phosphatase inhibitors, and transported substrates modulate DAT phosphorylation and activity, but the underlying mechanisms and role of phosphorylation in these processes are poorly understood. Complex adaptive changes in DAT function potentially related to these processes are also induced by psychostimulant and therapeutic transport blockers such as cocaine andmethylphenidate. This chapter provides an overview of the current state of knowledge regarding DAT phosphorylation and its relationship to transporter activity and trafficking. A better understanding of how dopaminergic neurons regulate DAT function and the role of phosphorylation may lead to the identification of novel therapeutic targets for the treatment and prevention of dopaminergic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amara SG, Sonders MS (1998) Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend 51:87–96

    Article  PubMed  CAS  Google Scholar 

  • Barker EL, Blakely RD (1995) Norepinephrine and serotonin transporters: molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 321–333

    Google Scholar 

  • Batchelor M, Schenk JO (1998) Protein kinase A activity may kinetically upregulate the striatal transporter for dopamine. J Neurosci 18:10304–10309

    PubMed  CAS  Google Scholar 

  • Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD (2000) Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci 20:7571–7578

    PubMed  CAS  Google Scholar 

  • Carlsson A (1987) Perspectives on the discovery of central monoaminergic neurotransmission. Annu Rev Neurosci 10:19–40

    Article  PubMed  CAS  Google Scholar 

  • Carneiro AM, Ingram SL, Beaulieu JM, Sweeney A, Amara SG, Thomas SM, Caron MG, Torres GE (2002) The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 22:7045–7054

    PubMed  CAS  Google Scholar 

  • Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, Leeb-Lundberg LM, Merrill G, Lafer EM, Ballou LM, Shippenberg TS, Javitch JA, Lin RZ, Galli A (2002) PI 3-kinase regulation of dopamine uptake. J Neurochem 81:859–869

    Article  PubMed  CAS  Google Scholar 

  • Carvelli L, McDonald PW, Blakely RD, Defelice LJ (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101:16046–16051

    Article  PubMed  CAS  Google Scholar 

  • Cervinski MA, Foster JD, Vaughan RA (2005) Endogenous and psychoactive substrates stimulate dopamine transporter phosphorylation by a transport and protein kinase C dependent mechanism. J Biol Chem 280:40442–40449

    Article  PubMed  CAS  Google Scholar 

  • Chang MY, Lee SH, Kim JH, Lee KH, Kim YS, Son H, Lee YS (2001) Protein kinase C-mediated functional regulation of dopamine transporter is not achieved by direct phosphorylation of the dopamine transporter protein. J Neurochem 77:754–761

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium-and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447:519–531

    Article  PubMed  CAS  Google Scholar 

  • Chi L, Reith ME (2003) Substrate-induced trafficking of the dopamine transporter in heterologously expressing cells and in rat striatal synaptosomal preparations. J Pharmacol Exp Ther 307:729–736

    Article  PubMed  CAS  Google Scholar 

  • Cowell RM, Kantor L, Hewlett GH, Frey KA, Gnegy ME (2000) Dopamine transporter antagonists block phorbol ester-induced dopamine release and dopamine transporter phosphorylation in striatal synaptosomes. Eur J Pharmacol 389:59–65

    Article  PubMed  CAS  Google Scholar 

  • Daniels GM, Amara SG (1999) Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem 274:35794–35801

    Article  PubMed  CAS  Google Scholar 

  • Daws LC, Callaghan PD, Moron JA, Kahlig KM, Shippenberg TS, Javitch JA, Galli A (2002) Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophys Res Commun 290:1545–1550

    Article  PubMed  CAS  Google Scholar 

  • Doolen S, Zahniser NR (2001) Protein tyrosine kinase inhibitors alter human dopamine transporter activity in Xenopus oocytes. J Pharmacol Exp Ther 296:931–938

    PubMed  CAS  Google Scholar 

  • Doolen S, Zahniser NR (2002) Conventional protein kinase C isoforms regulate human dopamine transporter activity in Xenopus oocytes. FEBS Lett 516:187–190

    Article  PubMed  CAS  Google Scholar 

  • Falkenburger BH, Barstow KL, Mintz I M (2001) Dendrodendritic inhibition through reversal of dopamine transport. Science 293:2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203–209

    PubMed  CAS  Google Scholar 

  • Foster JD, Blakely RD, Vaughan RA (2002a) Basal and stimulated phosphorylation sites on striatal and recombinant dopamine transporters. Abstract Viewer/Itinerary Planner. Society for Neuroscience Program, Washington, DC, No. 442.18

    Google Scholar 

  • Foster JD, Pananusorn B, Vaughan RA (2002b) Dopamine transporters are phosphorylated on N-terminal serines in rat striatum. J Biol Chem 277:25178–25186

    Article  PubMed  CAS  Google Scholar 

  • Foster JD, Blakely RD, Vaughan RA (2003a) Mutational analysis of potential phosphorylation sites in the N-terminal tail of the rat dopamine transporter. Abstract Viewer/Itinerary Planner. Society for Neuroscience Program, Washington, DC, No. 167.12

    Google Scholar 

  • Foster JD, Pananusorn B, Cervinski MA, Holden HE, Vaughan RA (2003b) Dopamine transporters are dephosphorylated in striatal homogenates and in vitro by protein phosphatase 1. Brain Res Mol Brain Res 110:100–108

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Fumagalli F, Jones SR, Caron MG (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  • Garcia BG, Wei Y, Moron JA, Lin RZ, Javitch JA, Galli A (2005) Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol Pharmacol 68:102–109

    PubMed  CAS  Google Scholar 

  • Giambalvo CT (2004) Mechanisms underlying the effects of amphetamine on particulate PKC activity. Synapse 51:128–139

    Article  PubMed  CAS  Google Scholar 

  • Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gorentla BK, Vaughan RA (2005) Differential effects of dopamine and psychoactive drugs on dopamine transporter phosphorylation and regulation. Neuropharmacology 49:759–768

    Article  PubMed  CAS  Google Scholar 

  • Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003) N-terminal truncation of the dopamine transporter abolishes phorbol ester-and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278:4990–5000

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Gu HH, Wall S, Rudnick G (1996) Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J Biol Chem 271:6911–6916

    Article  PubMed  CAS  Google Scholar 

  • Holton KL, Loder MK, Melikian HE (2005) Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 8:881–888

    PubMed  CAS  Google Scholar 

  • Huff RA, Vaughan RA, Kuhar MJ, Uhl GR (1997) Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J Neurochem 68:225–232

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, Snyder SH (1984) Uptake of MPP+ by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106:455–456

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME (2005) Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem 280:10914–10919

    Article  PubMed  CAS  Google Scholar 

  • Kahlig KM, Javitch JA, Galli A (2004) Amphetamine regulation of dopamine transport. Combined measurements of transporter currents and transporter imaging support the endocytosis of an active carrier. J Biol Chem 279:8966–8975

    Article  PubMed  CAS  Google Scholar 

  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 102:3495–3500

    Article  PubMed  CAS  Google Scholar 

  • Kantor L, Gnegy ME (1998) Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 284:592–598

    PubMed  CAS  Google Scholar 

  • Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2:E78

    Article  PubMed  Google Scholar 

  • Kramer HK, Poblete JC, Azmitia EC (1998) Characterization of the translocation of protein kinase C (PKC) by 3,4-methylenedioxymethamphetamine (MDMA/ecstasy) in synaptosomes: evidence for a presynaptic localization involving the serotonin transporter (SERT). Neuropsychopharmacology 19:265–277

    Article  PubMed  CAS  Google Scholar 

  • Kuhar MJ (1992) Molecular pharmacology of cocaine: a dopamine hypothesis and its implications. Ciba Found Symp 166:81–89; discussion 89–95

    PubMed  CAS  Google Scholar 

  • Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Kim MY, Kim DH, Lee YS (2004) Syntaxin 1A and receptor for activated C kinase interact with the N-terminal region of human dopamine transporter. Neurochem Res 29:1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Liang NY, Rutledge CO (1982)Evidence for carrier-mediated efflux of dopamine from corpus striatum. Biochem Pharmacol 31:2479–2484

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Zhang PW, Zhu X, Melgari JM, Huff R, Spieldoch RL, Uhl GR (2003) Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites. J Biol Chem 278:20162–20170

    Article  PubMed  CAS  Google Scholar 

  • Loder MK, Melikian HE (2003) The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 278:22168–22174

    Article  PubMed  CAS  Google Scholar 

  • Lonart G, Johnson KM (1994) Inhibitory effects of nitric oxide on the uptake of [3H]dopamine and [3H]glutamate by striatal synaptosomes. J Neurochem 63:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 19:7699–7710

    PubMed  CAS  Google Scholar 

  • Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20:424–429

    Article  PubMed  CAS  Google Scholar 

  • Misura KM, Gonzalez LC Jr, May AP, Scheller RH, Weis WI (2001) Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a. J Biol Chem 276:41301–41309

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Smith BL, Chen CH, Disatnik MH, Ron D (1995) Interaction of protein kinase C with RACK1, a receptor for activated C-kinase: a role in beta protein kinase C mediated signal transduction. Biochem Soc Trans 23:596–600

    PubMed  CAS  Google Scholar 

  • Moron JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, Lin ZC, Wang JB, Javitch JA, Galli A, Shippenberg TS (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci 23:8480–8488

    PubMed  CAS  Google Scholar 

  • Page G, Peeters M, Najimi M, Maloteaux JM, Hermans E (2001) Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J Neurochem 76:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Page G, Barc-Pain S, Pontcharraud R, Cante A, Piriou A, Barrier L (2004) Theup-regulation of the striatal dopamine transporter’s activity by cAMP is PKA-, CaMK II-and phosphatase-dependent. Neurochem Int 45:627–632

    Article  PubMed  CAS  Google Scholar 

  • Pifl C, Singer EA (1999) Ion dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol Pharmacol 56:1047–1054

    PubMed  CAS  Google Scholar 

  • Pogun S, Baumann MH, Kuhar MJ (1994) Nitric oxide inhibits [3H]dopamine uptake. Brain Res 641:83–91

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763–766

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 91:839–843

    Article  PubMed  CAS  Google Scholar 

  • Roth RH, Elsworth JD (1995) Biochemical pharmacology of midbrain dopamine neurons. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 227–243

    Google Scholar 

  • Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185

    Article  PubMed  CAS  Google Scholar 

  • Sandoval V, Riddle EL, Ugarte YV, Hanson GR, Fleckenstein AE (2001) Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model. J Neurosci 21:1413–1419

    PubMed  CAS  Google Scholar 

  • Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A 97:6850–6855

    Article  PubMed  CAS  Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    PubMed  CAS  Google Scholar 

  • Sitte HH, Hiptmair B, Zwach J, Pifl C, Singer EA, Scholze P (2001) Quantitative analysis of inward and outward transport rates in cells stably expressing the cloned human serotonin transporter: inconsistencies with the hypothesis of facilitated exchange diffusion. Mol Pharmacol 59:1129–1137

    PubMed  CAS  Google Scholar 

  • Staudinger J, Zhou J, Burgess R, Elledge SJ, Olson EN (1995) PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 128:263–271

    Article  PubMed  CAS  Google Scholar 

  • Staudinger J, Lu J, Olson EN (1997) Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem 272:32019–32024

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111:1267–1286

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Caron MG (2005) Approaches to identify monoamine transporter interacting proteins. J Neurosci Methods 143:63–68

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron MG (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30:121–134

    Article  PubMed  CAS  Google Scholar 

  • Uchikawa T, Kiuchi Y, Yura A, Nakachi N, Yamazaki Y, Yokomizo C, Oguchi K (1995) Ca2+-dependent enhancement of [3H]dopamine uptake in rat striatum: possible involvement of calmodulin-dependent kinases. J Neurochem 65:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Usdin TB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci U S A 88:11168–11171

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RA (2004) Phosphorylation and regulation of psychostimulant-sensitive neurotransmitter transporters. J Pharmacol Exp Ther 310:1–7

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RA, Huff RA, Uhl GR, Kuhar MJ (1997) Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes. J Biol Chem 272:15541–15546

    Article  PubMed  CAS  Google Scholar 

  • Volz TJ, Schenk JO (2004) L-arginine increases dopamine transporter activity in rat striatum via a nitric oxide synthase-dependent mechanism. Synapse 54:173–182

    Article  PubMed  CAS  Google Scholar 

  • West AR, Galloway MP, Grace AA (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44:227–245

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl−dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foster, J.D., Cervinski, M.A., Gorentla, B.K., Vaughan, R.A. (2006). Regulation of the Dopamine Transporter by Phosphorylation. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_10

Download citation

Publish with us

Policies and ethics