Skip to main content

Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal p-semiflows

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 483))

Abstract

P-semiflows are non-negative left anullers of a net's flow matrix. The importance of these vectors lies in their usefulness for analyzing net properties. The concept of minimal p-semiflow is known in the context of Mathematical Programming under the name "extremal direction of a cone". This connection highlights a parallelism between properties found in the domains of P/T nets and Mathematical Programming. The algorithms known in the domain of P/T nets for computing elementary semi-flows are basically a new rediscovery, with technical improvements with respect to type of problems involved, of the basic Fourier-Motzkin method. One of the fundamental problems of these algorithms is their complexity. Various methods and rules for mitigating this problem are examined. As a result, this paper presents two improved algorithms which are more efficient and robust when handling "real-life" Nets.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALAIWAN H.,MEMMI G.: Algorithmes de Recherche des Solutions Entieres Positives d'un Systeme Lineaire d'Equations Homogenes. Revue Technique-CSF,vol.14, n o 1, Mars, pp. 125–135.

    Google Scholar 

  2. Petri Nets: Central Models and their Properties. Advances in Petri Nets 1986, Proceedings of an Advanced Course, Bad Honnef, September 1986. LNCS 254, Springer Verlag, Berlin.

    Google Scholar 

  3. BALINSKI, M.L.: An Algorithm for Finding all Vertices of Convex Polyhedral Sets. SIAM IX, pp. 72–78.

    Google Scholar 

  4. BRAMS G.W.: Réseaux de Petri. Theorie et pratique, Masson, Paris.

    Google Scholar 

  5. CHERNIKOVA N.V.: Algorithm for Finding a General Formula for the Nonnegative Solutions of a System of Linear Equations, U.S.S.R. Computational Mathematics and Mathematical Physics IV, pp. 151–156.

    Google Scholar 

  6. CHVATAL V.: Linear Programming, W.H. Freeman and Company, New York, 1983.

    Google Scholar 

  7. COLOM J.M.: Métodos de análisis estructural de Redes de Petri basados en Programación Lineal y Geometría Convexa. Tesis Doctoral. Universidad de Zaragoza. June 1989.

    Google Scholar 

  8. DANTZIG G.B.: Linear Programming and Extensions. Princeton University Press.

    Google Scholar 

  9. DINES L.L.: On Positive Solutions of a System of Linear Equations, Annals of Mathematics 28, pp. 386–392.

    Google Scholar 

  10. DUFFIN R.J.: On Fourier's Analysis of Linear Inequality Systems, Mathematical Programming Study 1, American Elsevier Publishing Company, New York, pp. 71–95.

    Google Scholar 

  11. DYER M.E., PROLL L.G.: An Algorithm for Determining All Extreme Points of a Convex Polytope. Math. Programming XII, pp. 81–96.

    Google Scholar 

  12. FARKAS J.: Theorie der einfachen Ungleichungen. In: Journal für die reine und andgewandte Mathematik, 124, pp. 1–27.

    Google Scholar 

  13. FOURIER J.B.J.: Solution d'une Question Particuliere du Calcul des Inegalités. In Oeuvres II, pp. 317–328, Gauthier-Villars, Paris.

    Google Scholar 

  14. GENRICH H.J.: Predicate/Transition Nets. In [APN 87], pp. 207–247.

    Google Scholar 

  15. HADLEY G.: Linear Programming. Addison Wesley, Reading, Massachusetts.

    Google Scholar 

  16. JENSEN K.: Coloured Petri Nets. In [APN 87], pp. 248–299.

    Google Scholar 

  17. KANNAN, R., BACHEM A.: Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix. SIAM J. Comp., vol. 8, pp. 499–507.

    Google Scholar 

  18. KOHLER D.A.: Projections of Convex Polyhedral Sets. Report ORC 67-29, Operations Research Center, University of California at Berkeley.

    Google Scholar 

  19. KRUCKEBERG F., JAXY M.: Mathematical Methods for Calculating Invariants in Petri Nets, Advances in Petri Nets 1987 (Ed. Grzegorz Rozenberg) LNCS 266, Springer Verlag.

    Google Scholar 

  20. LANGFORD C.H: Some Theorems on deducibility.Annals of Mathematics I,28, pp.16–40.

    Google Scholar 

  21. MANAS M., NEDOMA J.: Finding All Vertices of a Convex Polyhedron. Numer. Math. XII, pp.226–229.

    Google Scholar 

  22. MARTINEZ J., SILVA M.: A Simple and Fast Algorithm to Obtain all Invariants of a Generalized Petri Net. Second European Workshop on Application and Theory of Petri Nets, Bad Honnef, September, pp. 411–422.

    Google Scholar 

  23. MARTINEZ J.: Contribución al Análisis y Modelado de Sistemas Concurrentes mediante Redes de Petri. Tesis Doctoral. Universidad de Zaragoza, Octubre 1984.

    Google Scholar 

  24. MATTHEISS T.H.: An Algorithm for Determining Irrelevant Constraints an All Vertices in Systems of Linear Inequalities. Operations Res. 21, pp. 247–260.

    Google Scholar 

  25. MATHEISS T.H.,RUBIN D.S.: A Survey and Comparison of Methods for Finding all Vertices of Convex Polyhedral Sets Mathematics of Ops. Res., Vol.5, No.2, May, pp.167–185.

    Google Scholar 

  26. MEMMI G: Fuites et semiflots dans les réseaux de Petri. Thése de Docteur Ingenieur. Univ. Pierre et Marie Curie, Paris VI, Paris, Decembre.

    Google Scholar 

  27. MOTZKIN T.S.: Beitrage zur Theorie der Linearen Ungleichungen, Doctoral Thesis, University of Zurich.

    Google Scholar 

  28. MURTY K.G.: Solving the Fixed Charge Problem by Ranking the Extreme Points. Operations Res. XVI, pp. 268–279.

    Google Scholar 

  29. MURTY K.G.: Adjacency on Convex Polyhedra, SIAM. Rev. XIII, pp. 377–386.

    Google Scholar 

  30. SILVA M.: Las Redes de Petri en la Automática y la Informática. Editorial AC, Madrid.

    Google Scholar 

  31. SILVA M., COLOM J.M.: On the Computation of Structural Synchronic Invariants in P/T nets, Advances in Petri Nets 1988 (g. Rozenberg, ed.), LNCS 340, Springer Verlag, Berlin, pp 386–417.

    Google Scholar 

  32. TOUDIC J.M.: Algorithmes d'analyse structurelle de réseaux de Petri. These 3éme Cycle, Université Pierre et Marie Curie, Paris VI, Octobre.

    Google Scholar 

  33. TREVES N.: Le Calcul d'Invariants dans le Réseaux de Petri a Predicats Transitions Unaires. Thése de Docteur de 3éme cycle, Univ. de Paris-Sud, Centre d'Orsay, Novembre, Paris.

    Google Scholar 

  34. WILLIAMS H.P.: Fourier-Motzkin Elimination Extension to Integer Programming Problems. Journal of Combinatorial theory (A) 21, pp. 118–123.

    Google Scholar 

  35. WILLIAMS H.P.: Fourier's Method of Linear Programming and its Dual, American Mathematical Monthly, Nov. 1986, pp. 681–695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colom, J.M., Silva, M. (1991). Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal p-semiflows. In: Rozenberg, G. (eds) Advances in Petri Nets 1990. ICATPN 1989. Lecture Notes in Computer Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53863-1_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-53863-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53863-9

  • Online ISBN: 978-3-540-46369-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics