Skip to main content

How do endothelial cells orientate?

  • Chapter

Part of the book series: Experientia Supplementum ((EXS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Claxton S, Fruttiger M (2003) Role of arteries in oxygen induced vaso-obliteration. Exp Eye Res 77: 305–311

    Article  PubMed  CAS  Google Scholar 

  2. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125: 1591–1598

    PubMed  CAS  Google Scholar 

  3. Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674

    Article  PubMed  CAS  Google Scholar 

  4. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol161: 1163–1177

    Article  PubMed  CAS  Google Scholar 

  5. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22: 1771–1779

    Article  PubMed  CAS  Google Scholar 

  6. Samakovlis C, Hacohen N, Manning G, Sutherland DC, Guillemin K, Krasnow MA (1996) Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122: 1395–1407

    PubMed  CAS  Google Scholar 

  7. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276: 4128–4133

    Article  PubMed  CAS  Google Scholar 

  8. Adryan B, Decker HJ, Papas TS, Hsu T (2000) Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19: 2803–2811

    Article  PubMed  CAS  Google Scholar 

  9. Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87: 1091–1101

    Article  PubMed  CAS  Google Scholar 

  10. Jarecki J, Johnson E, Krasnow MA (1999) Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99: 211–220

    Article  PubMed  CAS  Google Scholar 

  11. Ribeiro C, Ebner A, Affolter M (2002) In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev Cell 2: 677–683

    Article  PubMed  CAS  Google Scholar 

  12. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253–263

    Article  PubMed  CAS  Google Scholar 

  13. Wolf C, Gerlach N, Schuh R (2002) Drosophilatracheal system formation involves FGF-dependent cell extensions contacting bridge-cells. EMBO Rep 3: 563–568

    Article  PubMed  CAS  Google Scholar 

  14. Steneberg P, Hemphala J, Samakovlis C (1999) Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. Mech Dev 87: 153–163

    Article  PubMed  CAS  Google Scholar 

  15. Marin-Padilla M (1985) Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J Comp Neurol 241: 237–249

    Article  PubMed  CAS  Google Scholar 

  16. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53–65

    Article  PubMed  CAS  Google Scholar 

  17. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 51: 624–634

    PubMed  CAS  Google Scholar 

  18. Clark ER, Clark EL (1939) Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64: 251–301

    Article  Google Scholar 

  19. Kurz H, Gartner T, Eggli PS, Christ B (1996) First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173: 133–147

    Article  PubMed  CAS  Google Scholar 

  20. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Gene Dev 16: 2684–2698

    Article  PubMed  CAS  Google Scholar 

  21. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Visual Sci 43: 3500–3510

    Google Scholar 

  22. Gritli-Linde A, Lewis P, McMahon AP, Linde A (2001) The whereabouts of a morphogen: direct evidence for short-and graded long-range activity of hedgehog signaling peptides. Dev Biol 236: 364–386

    Article  PubMed  CAS  Google Scholar 

  23. McFarlane S (2000) Attraction versus repulsion: The growth cone decides. Biochem Cell Biol 78: 563–568

    Article  PubMed  CAS  Google Scholar 

  24. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947–11954

    PubMed  CAS  Google Scholar 

  25. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–26037

    PubMed  CAS  Google Scholar 

  26. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669–676

    Article  PubMed  CAS  Google Scholar 

  27. Haigh JJ, Gerhardt H, Morelli P, Haigh K, Tsien J, Damert A, Miquerol L, Muhlner U, Klein R, Ferrara N et al. (2003) Cortical and retinal defects caused by dosage dependent reductions in VEGF-A paracrine signaling. Dev Biol 262: 225–241

    Article  PubMed  CAS  Google Scholar 

  28. Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev Cell 3: 195–207

    Article  PubMed  CAS  Google Scholar 

  29. Baier H, Bonhoeffer F (1992) Axon guidance by gradients of a target-derived component. Science 255: 472–475

    Article  PubMed  ADS  CAS  Google Scholar 

  30. Baier H, Bonhoeffer F (1994) Attractive axon guidance molecules. Science 265: 1541–1542

    Article  PubMed  ADS  CAS  Google Scholar 

  31. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274: 1123–1133

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19: 341–377

    Article  PubMed  CAS  Google Scholar 

  33. Koleske AJ (2003) Do filopodia enable the growth cone to find its way? Sci STKE 183: pe 20

    Google Scholar 

  34. Davenport RW, Dou P, Rehder V, Kater SB (1993) A sensory role for neuronal growth cone filopodia. Nature 361: 721–724

    Article  PubMed  ADS  CAS  Google Scholar 

  35. Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci 16: 1140–1149

    PubMed  CAS  Google Scholar 

  36. Goodhill GJ, Urbach JS (1999) Theoretical analysis of gradient detection by growth cones. J Neurobiol 41: 230–241

    Article  PubMed  CAS  Google Scholar 

  37. Aletta JM, Greene LA (1988) Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci 8: 1425–1435

    PubMed  CAS  Google Scholar 

  38. Wu DY, Wang LC, Mason CA, Goldberg DJ (1996) Association of beta 1 integrin with phosphotyrosine in growth cone filopodia. J Neurosci 16: 1470–1478

    PubMed  CAS  Google Scholar 

  39. Cheng S, Mao J, Rehder V (2000) Filopodial behavior is dependent on the phosphorylation state of neuronal growth cones. Cell Motil Cytoskeleton 47: 337–350

    Article  PubMed  CAS  Google Scholar 

  40. Grabham PW, Goldberg DJ (1997) Nerve growth factor stimulates the accumulation of beta1 integrin at the tips of filopodia in the growth cones of sympathetic neurons. J Neurosci 17: 5455–5465

    PubMed  CAS  Google Scholar 

  41. Grabham PW, Foley M, Umeojiako A, Goldberg DJ (2000) Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones. J Cell Sci 113 (Pt 17): 3003–3012

    PubMed  CAS  Google Scholar 

  42. Bagri A, Tessier-Lavigne M (2002) Neuropilins as Semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv Exp Med Biol 515: 13–31

    PubMed  CAS  Google Scholar 

  43. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745

    Article  PubMed  CAS  Google Scholar 

  44. Soker S (2001) Neuropilin in the midst of cell migration and retraction. Int J Biochem Cell Biol 33: 433–437

    Article  PubMed  CAS  Google Scholar 

  45. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126: 4895–4902

    PubMed  CAS  Google Scholar 

  46. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki J, Hirota S, Kitamura Y et al. (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99: 3657–3662

    Article  PubMed  ADS  CAS  Google Scholar 

  47. Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5: 45–57

    Article  PubMed  MATH  CAS  Google Scholar 

  48. Adams RH (2002) Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13: 55–60

    Article  PubMed  CAS  Google Scholar 

  49. Adams RH, Klein R (2000) Eph receptors and ephrin ligands. essential mediators of vascular development. Trends Cardiovasc Med 10: 183–188

    Article  PubMed  CAS  Google Scholar 

  50. Liu ZJ, Herlin M (2003) Slit-Robo: Neuronal guides signal in tumor angiogenesis. Cancer Cell 4: 1–2

    Article  PubMed  CAS  Google Scholar 

  51. Stalmans I, Yin-Shan N, Rohan R, Fruttiger M, Bouché A, Ÿuce A, Fijusawa H, Hermans B, Shan M, Jansen S et al. (2002) Arteriolar and venolar patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109: 327–336

    Article  PubMed  CAS  Google Scholar 

  52. Mattot V, Moons L, Lupu F, Chernavvsky D, Gomez RA, Collen D, Carmeliet P (2002) Loss of the VEGF(164) and VEGF(188) isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J Am Soc Nephrol 13: 1548–1560

    Article  PubMed  CAS  Google Scholar 

  53. Yu JL, Rak JW, Klement G, Kerbel RS (2002) Vascular endothelial growth factor isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res 62: 1838–1846

    PubMed  CAS  Google Scholar 

  54. Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, Hida T, Oguchi Y, Ambati J, Miller J et al. (2003) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198: 483–489

    Article  PubMed  CAS  Google Scholar 

  55. Shima DT, Gougos A, Miller JW, Tolentino M, Robinson G, Adamis AP, D’Amore PA (1996) Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of Macaca fascicularis. Invest Ophthalmol Visual Sci 37: 1334–1340

    CAS  Google Scholar 

  56. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z et al. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744

    Article  PubMed  CAS  Google Scholar 

  57. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277: 36288–36295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Gerhardt, H., Betsholtz, C. (2005). How do endothelial cells orientate?. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_1

Download citation

Publish with us

Policies and ethics