Skip to main content

Hippocampal Pathology in Schizophrenia

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 4))

Abstract

The hippocampus is abnormal in schizophrenia. Smaller hippocampal volume is the most consistent finding and is present already in the early stages of the illness. The underlying cellular substrate is a subtle, yet functionally significant reduction of hippocampal interneurons. Neuroimaging studies have revealed a pattern of increased hippocampal activity at baseline and decreased recruitment during the performance of memory tasks. Hippocampal lesion models in rodents have replicated some of the pharmacological, anatomical and behavioral phenotype of schizophrenia. Taken together, this pattern of findings points to a disinhibition of hippocampal pyramidal cells and abnormal cortico-hippocampal interactions in schizophrenia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achim AM, Lepage M (2005) Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry 187:500–509

    Article  PubMed  Google Scholar 

  • Achim AM, Bertrand MC, Sutton H, Montoya A, Czechowska Y, Malla AK, Joober R, Pruessner JC, Lepage M (2007) Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry 64:999–1014

    Article  PubMed  Google Scholar 

  • Adler LE, Waldo MC (1991) Counterpoint: a sensory gating–hippocampal model of schizophrenia. Schizophr Bull 17:19–24

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Hijman R, de Haan EHF, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156:1358–1366

    PubMed  CAS  Google Scholar 

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58:85–96

    Article  PubMed  CAS  Google Scholar 

  • Arango C, Kirkpatrick B, Koenig J (2001) At issue: stress, hippocampal neuronal turnover, and neuropsychiatric disorders. Schizophr Bull 27:477–480

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus – memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  PubMed  CAS  Google Scholar 

  • Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70:319–345

    Article  PubMed  CAS  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (1999) Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 46:589–599

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005

    Article  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M (1997) Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755:121–129

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 104:10164–10169

    Article  PubMed  CAS  Google Scholar 

  • Berretta S, Gisabella B, Benes FM (2009) A rodent model of schizophrenia derived from postmortem studies. Behav Brain Res 204:363–368

    Article  PubMed  CAS  Google Scholar 

  • Bickel S, Javitt DC (2009) Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 204:352–362

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer PC, Nagamoto H, Johnson R, Adler LE, Egan M, Rose GM, Freedman R (1990) Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry 27:183–192

    Article  PubMed  CAS  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 343:450–456

    Article  PubMed  CAS  Google Scholar 

  • Boos HB, Aleman A, Cahn W, Pol HH, Kahn RS (2007) Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 64:297–304

    Article  PubMed  Google Scholar 

  • Boyer P, Phillips JL, Rousseau FL, Ilivitsky S (2007) Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev 54:92–112

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braendgaard H, Gundersen HJG (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18:39–78

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M, Lohr J, Wu J, Lottenberg S, Jerabek PA, Trenary M, Tafalla R, Reynolds C, Bunney WE (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49:935–942

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102:8627–8632

    Article  PubMed  CAS  Google Scholar 

  • Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    PubMed  Google Scholar 

  • Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Chang Q, Fischbach GD (2006) An acute effect of neuregulin 1 beta to suppress alpha 7-containing nicotinic acetylcholine receptors in hippocampal interneurons. J Neurosci 26:11295–11303

    Article  PubMed  CAS  Google Scholar 

  • Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Cohen NJ, Eichenbaum H (1993) Memory, amnesia and the hippocampal system. MIT, Cambridge, MA

    Google Scholar 

  • Corkin S (2002) What's new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160

    Article  PubMed  CAS  Google Scholar 

  • Csernansky JG, Joshi S, Wang L, Haller JW, Gado M, Miller JP, Grenander U, Miller MI (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci USA 95:11406–11411

    Article  PubMed  CAS  Google Scholar 

  • Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423–446

    PubMed  CAS  Google Scholar 

  • Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, Hughett P, Turetsky BI, Gur RE (2005) Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry 62:1218–1227

    Article  PubMed  Google Scholar 

  • Deakin JFW, Slater P, Simpson MDC, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Dhikav V, Anand KS (2007) Is hippocampal atrophy a future drug target? Med Hypotheses 68:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Dichter MA (2009) Emerging concepts in the pathogenesis of epilepsy and epileptogenesis. Arch Neurol 66:443–447

    Article  PubMed  Google Scholar 

  • Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W (1999) Activation of Heschl's gyrus during auditory hallucinations. Neuron 22:615–621

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5:425–432

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Mol Brain Res 29:211–223

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Burnet PW, Harrison PJ (1997) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase–polymerase chain reaction (RT–PCR) study. Brain Res Mol Brain Res 44:92–98

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    Article  PubMed  CAS  Google Scholar 

  • Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108:3–10

    Article  PubMed  Google Scholar 

  • Eyler LT, Olsen RK, Nayak GV, Mirzakhanian H, Brown GG, Jeste DV (2007) Brain response correlates of decisional capacity in schizophrenia: a preliminary FMRI study. J Neuropsychiatry Clin Neurosci 19:137–144

    Article  PubMed  Google Scholar 

  • Eyles DW, McGrath JJ, Reynolds GP (2002) Neuronal calcium-binding proteins and schizophrenia. Schizophr Res 57:27–34

    Article  PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B (1986) Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci 236:154–161

    Article  PubMed  CAS  Google Scholar 

  • Feldon J, Weiner I (2009) Editorial: special issue on modeling schizophrenia. Behav Brain Res 204:255–257

    Article  PubMed  CAS  Google Scholar 

  • Fletcher P (1998) The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci 1:266–267

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS (1992) The left medial temporal region and schizophrenia. A PET study. Brain 115:367–382

    Article  PubMed  Google Scholar 

  • Gao X-M, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 10:160–184

    Article  PubMed  CAS  Google Scholar 

  • Goldman MB, Torres IJ, Keedy S, Marlow-O'Connor M, Beenken B, Pilla R (2007) Reduced anterior hippocampal formation volume in hyponatremic schizophrenic patients. Hippocampus 17:554–562

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus cortex. Neuroscience 12:719–743

    Article  PubMed  CAS  Google Scholar 

  • Green M (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Greene R (2001) Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11:569–577

    Article  PubMed  CAS  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    PubMed  CAS  Google Scholar 

  • Gur RE, Mozley PD, Resnick SM, Mozley LH, Shtasel DL, Gallacher F, Arnold SE, Karp JS, Alavi A, Reivich M, Gur RC (1995) Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Arch Gen Psychiatry 52:657–667

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Whalley HC, Marwick K, McKirdy J, Sussmann J, Romaniuk L, Johnstone EC, Wan HI, McIntosh AM, Lawrie SM (2009) Hippocampal function in schizophrenia and bipolar disorder. Psychol Med [Epub ahead of print, Sept 7]

    Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162

    Article  CAS  Google Scholar 

  • Harrison PJ, Eastwood SL (1998) Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 352:1669–1673

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, McLaughlin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101

    Article  PubMed  CAS  Google Scholar 

  • Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421

    Article  PubMed  CAS  Google Scholar 

  • Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11:520–528

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Konradi C (2002) Hippocampal neurons in schizophrenia. J Neural Transm 109:891–905

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Heinsen H, Heinsen YC, Beckmann H (1990) Limbic structures and lateral ventricle in schizophrenia. A quantitative postmortem study. Arch Gen Psychiatry 47:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48:1002–1008

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1:318–323

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Goff D, Schacter DL, Savage CR, Fischman AJ, Alpert NM, Rauch SL (1999) Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch Gen Psychiatry 56:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59:521–529

    Article  PubMed  CAS  Google Scholar 

  • Hemsley DR (1993) A simple (or simplistic?) cognitive model for schizophrenia. Behav Res Ther 31:633–45

    Article  PubMed  CAS  Google Scholar 

  • Holt DJ, Weiss AP, Rauch SL, Wright CI, Zalesak M, Goff DC, Ditman T, Welsh RC, Heckers S (2005) Sustained activation of the hippocampus in response to fearful faces in schizophrenia. Biol Psychiatry 57:1011–1019

    Article  PubMed  Google Scholar 

  • Holt DJ, Kunkel L, Weiss AP, Goff DC, Wright CI, Shin LM, Rauch SL, Hootnick J, Heckers S (2006) Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82:153–162

    Article  PubMed  Google Scholar 

  • Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245

    Article  PubMed  Google Scholar 

  • Hurlemann R, Tepest R, Maier W, Falkai P, Vogeley K (2005) Intact hippocampal gray matter in schizophrenia as revealed by automatized image analysis postmortem. Anat Embryol (Berl) 210:513–517

    Article  Google Scholar 

  • Jessen F, Scheef L, Germeshausen L, Tawo Y, Kockler M, Kuhn KU, Maier W, Schild HH, Heun R (2003) Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry 160:1305–1312

    Article  PubMed  Google Scholar 

  • Kawasaki Y, Suzuki M, Maeda Y, Urata K, Yamaguchi N, Matsuda H, Hisada K, Suzuki M, Takashima T (1992) Regional cerebral blood flow in patients with schizophrenia. A preliminary report. Eur Arch Psychiatry Clin Neurosci 241:195–200

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Maeda Y, Sakai N, Higashima M, Yamaguchi N, Koshino Y, Hisada K, Suzuki M, Matsuda H (1996) Regional cerebral blood flow in patients with schizophrenia: relevance to symptom structures. Psychiatry Res 67:49–58

    Article  PubMed  CAS  Google Scholar 

  • Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    Article  PubMed  CAS  Google Scholar 

  • Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM (2006) A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 26:1604–1615

    Article  PubMed  CAS  Google Scholar 

  • Konkel A, Warren DE, Duff MC, Tranel DN, Cohen NJ (2008) Hippocampal amnesia impairs all manner of relational memory. Front Hum Neurosci 2:15

    Article  PubMed  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  PubMed  CAS  Google Scholar 

  • Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30:3719–3735

    Article  PubMed  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm Gen Sect 77:231–236

    Article  CAS  Google Scholar 

  • Krieckhaus EE, Donahoe JW, Morgan MA (1992) Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biol Psychiatry 31:560–570

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen LV, Cowell RM, Biscaia M, McCullumsmith RE, Meador-Woodruff JH (2009) Alterations of neurotransmitter receptors in schizophrenia: evidence from postmortem studies. In: Javitt DC, Kantrowitz J (eds) Handbook of neurochemistry and molecular neurobiology: schizophrenia, 3rd edn. Springer, New York, NY, pp 443–492

    Chapter  Google Scholar 

  • Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA (2003) Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psychiatry 53:601–608

    Article  PubMed  CAS  Google Scholar 

  • Law AJ, Shannon Weickert C, Hyde TM, Kleinman JE, Harrison PJ (2004) Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 127:125–136

    Article  PubMed  CAS  Google Scholar 

  • Lawrie S (2007) Distinguishing vulnerability, prediction, and progression in the preschizophrenic brain. Arch Gen Psychiatry 64:250–251, author reply 252–253

    Article  PubMed  Google Scholar 

  • Leavitt VM, Goldberg TE (2009) Episodic memory in schizophrenia. Neuropsychol Rev 19:312–323

    Article  PubMed  Google Scholar 

  • Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    Article  PubMed  CAS  Google Scholar 

  • Lepage M, Habib R, Tulving E (1998) Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8:313–322

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T (2007) Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons. Int Rev Neurobiol 78:109–131

    Article  PubMed  CAS  Google Scholar 

  • Li B, Woo RS, Mei L, Malinow R (2007a) The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54:583–597

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D, Hennah W, Peltonen L, Lonnqvist J, Huttunen MO, Kaprio J, Trachtenberg JT, Silva AJ, Cannon TD (2007b) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280–18285

    Article  PubMed  CAS  Google Scholar 

  • Liddle PF (1992) Syndromes of schizophrenia on factor analysis. Br J Psychiatry 161:860–861

    Article  Google Scholar 

  • Liddle PF, Friston KJ, Frith CD, Jones T, Hirsch SR, Frackowiak RSJ (1992) Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 160:179–186

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–286

    PubMed  Google Scholar 

  • Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, Weickert CS, Matsumoto M, Sawa A, Straub RE, Vakkalanka R, Herman MM, Weinberger DR, Kleinman JE (2006) Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 15:1245–1258

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11:551–568

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31:234–242

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2009) Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav Brain Res 204:306–312

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Behrens MM, Grace AA (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 29:2344–2354

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Liu Y, Ky B, Shughrue PJ, Austin CP, Morris JA (2002) Cloning and characterization of Disc1, the mouse ortholog of DISC1 (disrupted-in-schizophrenia 1). Genomics 80:662–672

    Article  PubMed  CAS  Google Scholar 

  • Malaspina D, Harkavy-Friedman J, Corcoran C, Mujica-Parodi L, Printz D, Gorman JM, Van Heertum R (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937

    Article  PubMed  Google Scholar 

  • Malykhin NV, Lebel RM, Coupland NJ, Wilman AH, Carter R (2009) In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging. NeuroImage 49:1224–1230

    Article  PubMed  Google Scholar 

  • McDonald C, Dineen B, Hallahan B (2008) Meta-analysis of brain volumes in unaffected first-degree relatives of patients with schizophrenia overemphasizes hippocampal deficits. Arch Gen Psychiatry 65:603–604, author reply 604–605

    Article  PubMed  Google Scholar 

  • McNaughton N, Kocsis B, Hajos M (2007) Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol 18:329–346

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31:288–294

    Article  PubMed  CAS  Google Scholar 

  • Mechawar N, Lacoste B, Yu WF, Srivastava LK, Quirion R (2007) Developmental profile of neuregulin receptor ErbB4 in postnatal rat cerebral cortex and hippocampus. Neuroscience 148:126–139

    Article  PubMed  CAS  Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550

    Article  PubMed  CAS  Google Scholar 

  • Neddens J, Buonanno A (2009) Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus [Epub ahead of print, Aug 4]

    Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55:433–440

    Article  PubMed  CAS  Google Scholar 

  • Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  PubMed  CAS  Google Scholar 

  • Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725

    Article  PubMed  CAS  Google Scholar 

  • Nordahl TE, Kusubov N, Carter C, Salamat S, Cummings AM, O’Shora-Celaya L, Eberling J, Robertson L, Huesman RH, Jagust W, Budinger TF (1996) Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600. Neuropsychopharmacology 15:541–554

    Article  PubMed  CAS  Google Scholar 

  • Olbrich HG, Braak H (1985) Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon's horn. Anat Embryol 173:105–110

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    Article  PubMed  CAS  Google Scholar 

  • Ongur D, Cullen TJ, Wolf DH, Rohan M, Barreira P, Zalesak M, Heckers S (2006) The neural basis of relational memory deficits in schizophrenia. Arch Gen Psychiatry 63:1268–1277

    Article  Google Scholar 

  • Owen MJ, Craddock N, O'Donovan MC (2005) Schizophrenia: genes at last? Trends Genet 9:518–525

    Article  CAS  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  • Phillips LJ, McGorry PD, Garner B, Thompson KN, Pantelis C, Wood SJ, Berger G (2006) Stress, the hippocampus and the hypothalamic–pituitary–adrenal axis: implications for the development of psychotic disorders. Aust NZ J Psychiatry 40:725–741

    Article  Google Scholar 

  • Port RL, Seybold KS (1995) Hippocampal synaptic plasticity as a biological substrate underlying episodic psychosis. Biol Psychiatry 37:318–324

    Article  PubMed  CAS  Google Scholar 

  • Porter RH, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231

    Article  PubMed  CAS  Google Scholar 

  • Preston AR, Shohamy D, Tamminga CA, Wagner AD (2005) Hippocampal function, declarative memory, and schizophrenia: anatomic and functional neuroimaging considerations. Curr Neurol Neurosci Rep 5:249–256

    Article  PubMed  Google Scholar 

  • Ragland JD, Gur RC, Raz J, Schroeder L, Kohler CG, Smith RJ, Alavi A, Gur RE (2001) Effect of schizophrenia on frontotemporal activity during word encoding and recognition: a PET cerebral blood flow study. Am J Psychiatry 158:1114–1125

    Article  PubMed  CAS  Google Scholar 

  • Ramsey AJ (2009) NR1 knockdown mice as a representative model of the glutamate hypothesis of schizophrenia. Prog Brain Res 179:51–58

    Article  PubMed  CAS  Google Scholar 

  • Reichenberg A, Harvey PD (2007) Neuropsychological impairments in schizophrenia: integration of performance-based and brain imaging findings. Psychol Bull 133:833–858

    Article  PubMed  Google Scholar 

  • Reitz C, Brickman AM, Brown TR, Manly J, DeCarli C, Small SA, Mayeux R (2009) Linking hippocampal structure and function to memory performance in an aging population. Arch Neurol 66:1385–1392

    Article  PubMed  Google Scholar 

  • Roberts DR (1963) Schizophrenia and the brain. J Neuropsychiatry 5:71–79

    Google Scholar 

  • Roberts RC (2007) Schizophrenia in translation: disrupted in schizophrenia (DISC1): integrating clinical and basic findings. Schizophr Bull 33:11–15

    Article  PubMed  Google Scholar 

  • Rossi A, Stratta P, Mancini F, Gallucci M, Mattei P, Core L, Di Michele V, Casacchia M (1994) Magnetic resonance imaging findings of amygdala–anterior hippocampus shrinkage in male patients with schizophrenia. Psychiatry Res 52:43–53

    Article  PubMed  CAS  Google Scholar 

  • Sawa A (2009) Genetic models of schizophrenia. Prog Brain Res 179:3–6

    Article  PubMed  Google Scholar 

  • Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ, Falkai P, Phillips AG, Honer WG (2005) Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 62:263–272

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117:395–407

    Article  PubMed  Google Scholar 

  • Schobel SA, Kelly MA, Corcoran CM, Van Heertum K, Seckinger R, Goetz R, Harkavy-Friedman J, Malaspina D (2009a) Anterior hippocampal and orbitofrontal cortical structural brain abnormalities in association with cognitive deficits in schizophrenia. Schizophr Res 114:110–118

    Article  PubMed  Google Scholar 

  • Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, Small SA (2009b) Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry 66:938–946

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Faraone SV, Goldstein JM, Goodman JM, Kremen WS, Toomey R, Tourville J, Kennedy D, Makris N, Caviness VS, Tsuang MT (1999) Thalamic and amygdala–hippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 46:941–954

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, Toomey R, Kennedy D, Caviness VS, Tsuang MT (2002) Left hippocampal volume as a vulnerability indicator for schizophrenia. Arch Gen Psychiatry 59:839–849

    Article  PubMed  Google Scholar 

  • Seress L, Gulyas AI, Ferrer I, Tunon T, Soriano E, Freund TF (1993) Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. J Comp Neurol 337:208–230

    Article  PubMed  CAS  Google Scholar 

  • Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J (2007) Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophr Res 89:177–190

    Article  PubMed  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L, Jones T, Frackowiak RSJ (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    Article  PubMed  CAS  Google Scholar 

  • Smith ME (2005) Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 15:798–807

    Article  PubMed  Google Scholar 

  • Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26

    Article  PubMed  CAS  Google Scholar 

  • Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518

    Article  PubMed  Google Scholar 

  • Strange BA, Dolan RJ (2006) Anterior medial temporal lobe in human cognition: memory for fear and the unexpected. Cogn Neuropsychiatry 11:198–218

    Article  PubMed  Google Scholar 

  • Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci USA 96:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH, Mayhew MB, Vakkalanka RK, Kolachana BS, Kleinman JE, Weinberger DR (2007) Allelic variation in GAD1 (GAD(67)) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 12:854–869

    Article  PubMed  CAS  Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794

    Article  PubMed  CAS  Google Scholar 

  • Talamini LM, Meeter M, Elvevag B, Murre JM, Goldberg TE (2005) Reduced parahippocampal connectivity produces schizophrenia-like memory deficits in simulated neural circuits with reduced parahippocampal connectivity. Arch Gen Psychiatry 62:485–493

    Article  PubMed  Google Scholar 

  • Talbot K (2009) The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. Prog Brain Res 170:87–94

    Article  CAS  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363

    PubMed  CAS  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Carpenter WT (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530

    Article  PubMed  CAS  Google Scholar 

  • Tebartz van Elst L, Ebert D, Hesslinger B (2007) Amygdala volume status might reflect dominant mode of emotional information processing. Arch Gen Psychiatry 64:251–252, author reply 252–253

    Article  PubMed  Google Scholar 

  • Teipel SJ, Meindl T, Grinberg L, Heinsen H, Hampel H (2008) Novel MRI techniques in the assessment of dementia. Eur J Nucl Med Mol Imaging 35(Suppl 1):S58–S69

    Article  PubMed  Google Scholar 

  • Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57:252–260

    Article  PubMed  CAS  Google Scholar 

  • Tregellas JR, Davalos DB, Rojas DC, Waldo MC, Gibson L, Wylie K, Du YP, Freedman R (2007) Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophr Res 92:262–272

    Article  PubMed  Google Scholar 

  • Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed  Google Scholar 

  • Tsien JZ (2000) Linking Hebb's coincidence-detection to memory formation. Curr Opin Neurobiol 10:266–273

    Article  PubMed  CAS  Google Scholar 

  • van Haren NE, Bakker SC, Kahn RS (2008) Genes and structural brain imaging in schizophrenia. Curr Opin Psychiatry 21:161–167

    Article  PubMed  Google Scholar 

  • Velakoulis D, Stuart GW, Wood SJ, Smith DJ, Brewer WJ, Desmond P, Singh B, Copolov D, Pantelis C (2001) Selective bilateral hippocampal volume loss in chronic schizophrenia. Biol Psychiatry 50:531–539

    Article  PubMed  CAS  Google Scholar 

  • Velakoulis D, Wood SJ, Wong MT, McGorry PD, Yung A, Phillips L, Smith D, Brewer W, Proffitt T, Desmond P, Pantelis C (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63:139–149

    Article  PubMed  Google Scholar 

  • Venables PH (1992) Hippocampal function and schizophrenia. Experimental psychological evidence. Ann NY Acad Sci 658:111–127

    Article  PubMed  CAS  Google Scholar 

  • Vita A, De Peri L, Silenzi C, Dieci M (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88

    Article  PubMed  CAS  Google Scholar 

  • Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A (2009) Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 29:12255–12264

    Article  PubMed  CAS  Google Scholar 

  • Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, Crow TJ (2002) Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 159:821–828

    Article  PubMed  Google Scholar 

  • Wang L, Joshi SC, Miller MI, Csernansky JG (2001) Statistical analysis of hippocampal asymmetry in schizophrenia. NeuroImage 14:531–545

    Article  PubMed  CAS  Google Scholar 

  • Weiss AP, Heckers S (1999) Neuroimaging of hallucinations: a review of the literature. Psychiatry Res: Neuroimaging 92:61–74

    Article  PubMed  CAS  Google Scholar 

  • Weiss AP, Heckers S (2001) Neuroimaging of declarative memory in schizophrenia. Scand J Psychol 42:239–250

    Article  PubMed  CAS  Google Scholar 

  • Weiss AP, Schacter DL, Goff DC, Rauch SL, Alpert NM, Fischman AJ, Heckers S (2003) Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53:48–55

    Article  PubMed  Google Scholar 

  • Weiss AP, Zalesak M, DeWitt I, Goff D, Kunkel L, Heckers S (2004) Impaired hippocampal function during the detection of novel words in schizophrenia. Biol Psychiatry 55:668–675

    Article  PubMed  Google Scholar 

  • Weiss AP, DeWitt I, Goff D, Ditman T, Heckers S (2005) Anterior and posterior hippocampal volumes in schizophrenia. Schizophr Res 73:103–112

    Article  PubMed  Google Scholar 

  • West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22

    Article  PubMed  CAS  Google Scholar 

  • Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal–hippocampal network. In: Scharfman HE, Witter MP, Schwarcz R (eds) The parahippocampal region: implications for neurological and psychiatric diseases. Annals of the New York Academy of Sciences, New York, NY, pp 1–24

    Google Scholar 

  • Witthaus H, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y, Gallinat J, Ruhrmann S, Brune M, Heinz A, Klingebiel R, Juckel G (2009) Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Res 173:163–169

    Article  PubMed  Google Scholar 

  • Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, Neiswender H, Dong XP, Wu J, Gassmann M, Lai C, Xiong WC, Gao TM, Mei L (2007) Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54:599–610

    Article  PubMed  CAS  Google Scholar 

  • Woon FL, Hedges DW (2008) Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus 18:729–736

    Article  PubMed  Google Scholar 

  • Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25

    PubMed  CAS  Google Scholar 

  • Zeineh MM, Engel SA, Bookheimer SY (1998) Segmentation and unfolding of the human hippocampus and parahippocampal gyrus with projection of functional MRI. NeuroImage 7:S693

    Google Scholar 

  • Zhang ZJ, Reynolds GP (2000) A selective deficit in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 49:65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Heckers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Heckers, S., Konradi, C. (2010). Hippocampal Pathology in Schizophrenia. In: Swerdlow, N. (eds) Behavioral Neurobiology of Schizophrenia and Its Treatment. Current Topics in Behavioral Neurosciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_43

Download citation

Publish with us

Policies and ethics