Skip to main content

What is in that Drink: The Biological Actions of Ethanol, Acetaldehyde, and Salsolinol

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 13))

Abstract

Alcohol abuse and alcoholism represent substantial problems that affect a large portion of individuals throughout the world. Extensive research continues to be conducted in an effort to identify the biological basis of the reinforcing properties of alcohol in order to develop effective pharmacotherapeutic and behavioral interventions. One theory that has developed within the alcohol field over the past four decades postulates that the reinforcing properties of alcohol are due to the action of the metabolites/products of alcohol within the central nervous system (CNS). The most extreme version of this theory suggests that the biologically active metabolites/products of alcohol, created from the breakdown from alcohol, are the ultimate source of the reinforcing properties of alcohol. The contrary theory proposes that the reinforcing properties of alcohol are mediated completely through the interaction of the ethanol molecule with several neurochemical systems within the CNS. While there are scientific findings that offer support for both of these stances, the reinforcing properties of alcohol are most likely generated through a complex series of peripheral and central effects of both alcohol and its metabolites. Nonetheless, the development of a greater understanding for how the metabolites/products of alcohol contribute to the reinforcing properties of alcohol is an important factor in the development of efficacious pharmacotherapies for alcohol abuse and alcoholism. This chapter is intended to provide a historical perspective of the role of acetaldehyde (the first metabolite of alcohol) in alcohol reinforcement as well as review the basic research literature on the effects of acetaldehyde (and acetaldehyde metabolites/products) within the CNS and how these function with regard to alcohol reward.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Triazole:

3-amino-1,2,4-triazole

ACD:

Acetaldehyde

ADH:

Alcohol dehydrogenase

IA :

A-type potassium current

BEC:

Blood ethanol concentration

CNS:

Central nervous system

CPP:

Conditioned place preference

DOR:

Delta opioid receptor

2 D2 :

Dopamine

DA:

Dopamine

EtOH:

Ethanol

GABA:

Gamma-aminobutyric acid

GLU:

Glutamate

IH :

Hyperpolarization-activated inward current

ICV:

Intra-cerebral ventricular

IV:

Intra-venous

mPFC:

Medial prefrontal cortex

μM:

Micro-molar

MOR:

Mu opioid receptor

NIAAA:

National Institute for Alcohol Abuse and Alcoholism

AcbC:

Nucleus accumbens core

AcbSh:

Nucleus accumbens shell

Acb:

Nucleus accumbens

5HT3 :

Serotonin 3

5-HT:

Serotonin

TBCs:

Tetrahydrobetacarbolines

SAL:

Salsolinol

THIQs:

Tetrahydroisoquinoline alkaloids

THP:

Tetrahydropapaveroline

ALDH:

Aldehyde dehydrogenase

US FDA:

United States Food and Drug Administration

VTA:

Ventral tegmental area

WHO:

World Health Organization

References

  • Adell A, Myers RD (1994) Increased alcohol intake in low alcohol drinking rats after chronic infusion of the beta-carboline harman into the hippocampus. Pharmacol Biochem Behav 49:949–953

    CAS  PubMed  Google Scholar 

  • Adell A, Myers RD (1995) 5-HT, dopamine, norepinephrine, and related metabolites in brain of low alcohol drinking (LAD) rats shift after chronic intra-hippocampal infusion of harman. Neurochem Res 20:209–215

    CAS  PubMed  Google Scholar 

  • Airaksinen MM, Mahonen M, Tuomisto L, Peura P, Eriksson CJ (1983) Tetrahydro-beta-carbolines: effect on alcohol intake in rats. Pharmacol Biochem Behav 18(suppl 1):525–529

    CAS  PubMed  Google Scholar 

  • Airaksinen MM, Saano V, Steidel E, Juvonen H, Huhtikangas A, Gynther J (1984) Binding of beta-carbolines and tetrahydroisoquinolines by opiate receptors of the delta-type. Acta Pharmacol Toxicol (Copenh) 55:380–385

    CAS  Google Scholar 

  • Alpers HS, McLaughlin BR, Nix WM, Davis VE (1975) Inhibition of catecholamine uptake and retention in synaptosomal preparations by tetrahydroisoquinoline and tetrahydroprotoberberine alkaloids. Biochem Pharmacol 24:1391–1396

    CAS  Google Scholar 

  • Amit Z, Brown ZW, Rockman GE (1977) Possible involvement of acetaldehyde, norepinephrine and their tetrahydroisoquinoline derivatives in the regulation of ethanol self-administration. Drug Alcohol Depend 2:495–500

    CAS  PubMed  Google Scholar 

  • Appel SB, Liu Z, McElvain MA, Brodie MS (2003) Ethanol excitation of dopaminergic ventral tegmental area neurons is blocked by quinidine. J Pharmacol Exp Ther 306:437–446

    CAS  PubMed  Google Scholar 

  • Aragon CM, Amit Z (1992) The effect of 3-amino-1,2,4-triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology 31:709–712

    CAS  PubMed  Google Scholar 

  • Aragon CM, Spivak K, Amit Z (1985) Blockade of ethanol induced conditioned taste aversion by 3-amino-1,2,4-triazole: evidence for catalase mediated synthesis of acetaldehyde in rat brain. Life Sci 37:2077–2084

    CAS  PubMed  Google Scholar 

  • Aragon CM, Abitbol M, Amit Z (1986) Acetaldehyde may mediate reinforcement and aversion produced by ethanol. An examination using a conditioned taste-aversion paradigm. Neuropharmacology 25:79–83

    CAS  PubMed  Google Scholar 

  • Ball D (2008) Addiction science and its genetics. Addiction 103:360–367

    PubMed  Google Scholar 

  • Baum SS, Hill R, Kiianmaa K, Rommelspacher H (1999) Effect of ethanol on (R)- and (S)-salsolinol, salsoline, and THP in the nucleus accumbens of AA and ANA rats. Alcohol 18:165–169

    CAS  Google Scholar 

  • Bergmark A (2008) On treatment mechanisms-what can we learn from the COMBINE study. Addiction 103:703–705

    PubMed  Google Scholar 

  • Brodie MS, Appel SB (1998) The effects of ethanol on dopaminergic neurons of the ventral tegmental area studied with intracellular recording in brain slices. Alcohol Clin Exp Res 22:236–244

    CAS  PubMed  Google Scholar 

  • Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65–69

    CAS  PubMed  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852

    CAS  PubMed  Google Scholar 

  • Brown ZW, Amit Z, Rockman GE (1979) Intraventricular self-administration of acetaldehyde, but not ethanol, in naive laboratory rats. Psychopharmacology (Berl) 64:271–276

    CAS  Google Scholar 

  • Brown ZW, Amit Z, Smith B (1980) Intraventricular self-administration of acetaldehyde and voluntary consumption of ethanol in rats. Behav Neural Biol 28:150–155

    CAS  PubMed  Google Scholar 

  • Buckholtz NS (1980) Neurobiology of tetrahydro-beta-carbolines. Life Sci 27:893–903

    CAS  PubMed  Google Scholar 

  • Carpenter RK, Macleod LD (1952) The effects of ethyl alcohol and acetaldehyde on maze behaviour and motor co-ordination in rats. J Ment Sci 98:167–173

    CAS  PubMed  Google Scholar 

  • Chifflot MJ (1916) Sur un cas de rubefaction de la face, tendant a se generalizer a la suite de I’ngestion du Coprinus atramentarius. Fr Bull Soc Mycol Fr 32:63

    Google Scholar 

  • Cohen G (1976) Alkaloid products in the metabolism of alcohol and biogenic amines. Biochem Pharmacol 25:1123–1128

    CAS  PubMed  Google Scholar 

  • Cohen G, Collins M (1970) Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167:1749–1751

    CAS  PubMed  Google Scholar 

  • Cohen G, Sinet PM, Heikkila R (1980) Ethanol oxidation by rat brain in vivo. Alcohol Clin Exp Res 4:366–370

    CAS  PubMed  Google Scholar 

  • Collins AC, Cashaw JL, Davis VE (1973) Dopamine-derived tetrahydroisoquinoline alkaloids–inhibitors of neuroamine metabolism. Biochem Pharmacol 22:2337–2348

    CAS  PubMed  Google Scholar 

  • Correa M, Arizzi MN, Betz A, Mingote S, Salamone JD (2003) Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Res Bull 62:197–202

    CAS  PubMed  Google Scholar 

  • Davis VE, Walsh MJ (1970) Alcohol, amines, and alkaloids: a possible biochemical basis for alcohol addiction. Science 167:1005–1007

    CAS  PubMed  Google Scholar 

  • Diana M, Peana AT, Sirca D, Lintas A, Melis M, Enrico P (2008) Crucial role of acetaldehyde in alcohol activation of the mesolimbic dopamine system. Ann N Y Acad Sci 1139:307–317

    CAS  PubMed  Google Scholar 

  • Ding ZM, Rodd ZA, Engleman EA, McBride WJ (2009) Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res 33:1571–1581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding ZM, Oster SM, Hall SR, Engleman EA, Hauser SR, McBride WJ, Rodd ZA (2011) The stimulating effects of ethanol on ventral tegmental area dopamine neurons projecting to the ventral pallidum and medial prefrontal cortex in female Wistar rats: regional difference and involvement of serotonin-3 receptors. Psychopharmacology (Berl) 216:245–255

    CAS  Google Scholar 

  • Duncan C, Deitrich RA (1980) A critical evaluation of tetrahydroisoquinoline induced ethanol preference in rats. Pharmacol Biochem Behav 13:265–281

    CAS  PubMed  Google Scholar 

  • Duncan CC, Fernando PW (1991) Effects of tetrahydropapaveroline in the nucleus accumbens and the ventral tegmental area on ethanol preference in the rat. Alcohol 8:87–90

    CAS  PubMed  Google Scholar 

  • Durlach J, Rinjard P, Sprince H, Smith GG (1988) Similar antagonistic effects of Ca N-acetylhomotaurinate on depression of motor activity and lethality induced by acetaldehyde or ethanol. Methods Find Exp Clin Pharmacol 10:437–447

    CAS  PubMed  Google Scholar 

  • Edenberg HJ (2011) Common and rare variants in alcohol dependence. Biol Psychiatry 70:498–499

    PubMed  Google Scholar 

  • Engleman EA, Ding ZM, Oster SM, Toalston JE, Bell RL, Murphy JM, McBride WJ, Rodd ZA (2009) Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcohol Clin Exp Res 33:2162–2171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enrico P, Sirca D, Mereu M, Peana AT, Lintas A, Golosio A, Diana M (2009) Acetaldehyde sequestering prevents ethanol-induced stimulation of mesolimbic dopamine transmission. Drug Alcohol Depend 100:265–271

    CAS  PubMed  Google Scholar 

  • Eriksson CJ (1977) Acetaldehyde metabolism in vivo during ethanol oxidation. Adv Exp Med Biol 85A:319–341

    CAS  PubMed  Google Scholar 

  • Eriksson CJ, Hillbom ME, Sovijarvi AR (1980) Difficulties in measuring human blood acetaldehyde concentrations during ethanol intoxication. Adv Exp Med Biol 126:439–451

    CAS  PubMed  Google Scholar 

  • Escarabajal D, Miquel M, Aragon CM (2000) A psychopharmacological study of the relationship between brain catalase activity and ethanol-induced locomotor activity in mice. J Stud Alcohol 61:493–498

    CAS  PubMed  Google Scholar 

  • Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530–536

    CAS  PubMed  Google Scholar 

  • Font L, Miquel M, Aragon CM (2005) Prevention of ethanol-induced behavioral stimulation by D-penicillamine: a sequestration agent for acetaldehyde. Alcohol Clin Exp Res 29:1156–1164

    CAS  PubMed  Google Scholar 

  • Font L, Aragon CM, Miquel M (2006a) Ethanol-induced conditioned place preference, but not aversion, is blocked by treatment with D-penicillamine, an inactivation agent for acetaldehyde. Psychopharmacology (Berl) 184:56–64

    CAS  Google Scholar 

  • Font L, Aragon CM, Miquel M (2006b) Voluntary ethanol consumption decreases after the inactivation of central acetaldehyde by d-penicillamine. Behav Brain Res 171:78–86

    CAS  PubMed  Google Scholar 

  • Frank J, Cichon S, Treutlein J, Ridinger M, Mattheisen M, Hoffmann P, Herms S, Wodarz N, Soyka M, Zill P, Maier W, Mossner R, Gaebel W, Dahmen N, Scherbaum N, Schmal C, Steffens M, Lucae S, Ising M, Muller-Myhsok B, Nothen MM, Mann K, Kiefer F, Rietschel M (2012) Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster. Addict Biol 17:171–80

    Google Scholar 

  • Geller I, Purdy R (1975) Alteration of ethanol preference in rats; effects of beta-carbolines. Adv Exp Med Biol 59:295–301

    CAS  PubMed  Google Scholar 

  • Geller I, Purdy R, Merritt JH (1973) Alterations in ethanol preference in the rat: the role of brain biogenic amines. Ann N Y Acad Sci 215:54–59

    CAS  PubMed  Google Scholar 

  • Griffiths PJ, Littleton JM, Ortiz A (1974) Proceedings: chronic administration of acetaldehyde to mice: behavioural and biochemical similarities with chronic ethanol administration. Br J Pharmacol 50:441P

    CAS  PubMed  Google Scholar 

  • Haber H, Roske I, Rottmann M, Georgi M, Melzig MF (1997) Alcohol induces formation of morphine precursors in the striatum of rats. Life Sci 60:79–89

    CAS  PubMed  Google Scholar 

  • Hald J, Jacobsen E (1948) A drug sensitizing the organism to ethyl alcohol. Lancet 2:1001–1004

    CAS  PubMed  Google Scholar 

  • Hald J, Jacobsen E, Larsen V (1949a) Formation of acetaldehyde in the organism in relation to dosage of antabuse (tetraethylthiuramdisulphide) and to alcohol-concentration in blood. Acta Pharmacol Toxicol (Copenh) 5:179–188

    CAS  Google Scholar 

  • Hald J, Jacobsen E, Larsen V (1949b) The rate of acetaldehyde metabolism in isolated livers and hind limbs of rabbits treated with antabuse (tetraethylthiuramdisulphide). Acta Pharmacol Toxicol (Copenh) 5:298–308

    CAS  Google Scholar 

  • Heikkila R, Cohen G, Dembiec D (1971) Tetrahydroisoquinoline alkaloids: uptake by rat brain homogenates and inhibition of catecholamine uptake. J Pharmacol Exp Ther 179:250–258

    CAS  PubMed  Google Scholar 

  • Hipolito L, Sanchez-Catalan MJ, Granero L, Polache A (2009) Local salsolinol modulates dopamine extracellular levels from rat nucleus accumbens: shell/core differences. Neurochem Int 55:187–192

    CAS  PubMed  Google Scholar 

  • Hipolito L, Sanchez-Catalan MJ, Zornoza T, Polache A, Granero L (2010) Locomotor stimulant effects of acute and repeated intrategmental injections of salsolinol in rats: role of mu-opioid receptors. Psychopharmacology (Berl) 209:1–11

    CAS  Google Scholar 

  • Hipolito L, Marti-Prats L, Sanchez-Catalan MJ, Polache A, Granero L (2011) Induction of conditioned place preference and dopamine release by salsolinol in posterior VTA of rats: involvement of mu-opioid receptors. Neurochem Int 59:559–562

    Google Scholar 

  • Holtzman SG, Schneider FH (1974) Comparison of acetaldehyde and ethanol: depression of motor activity in mice. Life Sci 14:1243–1250

    CAS  PubMed  Google Scholar 

  • Hunt WA (1996) Role of acetaldehyde in the actions of ethanol on the brain–a review. Alcohol 13:147–151

    CAS  PubMed  Google Scholar 

  • Huttunen P, Myers RD (1987) Anatomical localization in hippocampus of tetrahydro-beta-carboline-induced alcohol drinking in the rat. Alcohol 4:181–187

    CAS  PubMed  Google Scholar 

  • Inyushin MU, Arencibia-Albite F, Vazquez-Torres R, Velez-Hernandez ME, Jimenez-Rivera CA (2010) Alpha-2 noradrenergic receptor activation inhibits the hyperpolarization-activated cation current (Ih) in neurons of the ventral tegmental area. Neuroscience 167:287–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karahanian E, Quintanilla ME, Tampier L, Rivera-Meza M, Bustamante D, Gonzalez-Lira V, Morales P, Herrera-Marschitz M, Israel Y (2011) Ethanol as a prodrug: brain metabolism of ethanol mediates its reinforcing effects. Alcohol Clin Exp Res 35:606–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiianmaa K, Virtanen P (1978) Ethanol and acetaldehyde levels in cerebrospinal fluid during ethanol oxidation in the rat. Neurosci Lett 10:181–186

    CAS  Google Scholar 

  • Koechling UM, Amit Z (1994) Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice. Alcohol 11:235–239

    CAS  PubMed  Google Scholar 

  • Koelsch F (1914) Uber neuartige gewerbliche Errankungen in Kalkstickstoffbetrieben. Munch Med Wochschr 61:1869–1970

    Google Scholar 

  • Koob GF, Roberts AJ, Schulteis G, Parsons LH, Heyser CJ, Hyytia P, Merlo-Pich E, Weiss F (1998) Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res 22:3–9

    CAS  PubMed  Google Scholar 

  • Koyama S, Appel SB (2006a) A-type k+ current of dopamine and gaba neurons in the ventral tegmental area. J Neurophysiol 96:544–554

    CAS  PubMed  Google Scholar 

  • Koyama S, Appel SB (2006b) Characterization of M-current in ventral tegmental area dopamine neurons. J Neurophysiol 96:535–543

    CAS  PubMed  Google Scholar 

  • Koyama S, Brodie MS, Appel SB (2007) Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons. J Neurophysiol 97:1977–1985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen V (1948) The effect of experimental animals of antabuse (tetraethylthiuramdisulphide) in combination with alcohol. Acta Pharmacol 4:321–332

    CAS  Google Scholar 

  • Li TK (2000) Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J Stud Alcohol 61:5–12

    CAS  PubMed  Google Scholar 

  • Lovinger DM, White G (1991) Ethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in neuroblastoma cells and isolated adult mammalian neurons. Mol Pharmacol 40:263–270

    CAS  PubMed  Google Scholar 

  • Lu RB, Lee JF, Huang SY, Lee SY, Chang YH, Kuo PH, Chen SL, Chen SH, Chu CH, Lin WW, Wu PL, Ko HC (2010) Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism. Addict Biol. doi:10.1111/j.1369-1600.2010.00268.x

  • Maruyama W, Nakahara D, Ota M, Takahashi T, Takahashi A, Nagatsu T, Naoi M (1992) N-methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study. J Neurochem 59:395–400

    CAS  PubMed  Google Scholar 

  • Maruyama W, Nakahara D, Dostert P, Hashiguchi H, Ohta S, Hirobe M, Takahashi A, Nagatsu T, Naoi M (1993) Selective release of serotonin by endogenous alkaloids, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, (R)- and (S)salsolinol, in the rat striatum; in vivo microdialysis study. Neurosci Lett 149:115–118

    CAS  PubMed  Google Scholar 

  • Matsuzawa S, Suzuki T, Misawa M (2000) Involvement of mu-opioid receptor in the salsolinol-associated place preference in rats exposed to conditioned fear stress. Alcohol Clin Exp Res 24:366–372

    CAS  PubMed  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    CAS  PubMed  Google Scholar 

  • McCoy JG, Strawbridge C, McMurtrey KD, Kane VB, Ward CP (2003) A re-evaluation of the role of tetrahydropapaveroline in ethanol consumption in rats. Brain Res Bull 60:59–65

    CAS  PubMed  Google Scholar 

  • McDaid J, McElvain MA, Brodie MS (2008) Ethanol effects on dopaminergic ventral tegmental area neurons during block of Ih: involvement of barium-sensitive potassium currents. J Neurophysiol 100:1202–1210

    CAS  PubMed  Google Scholar 

  • Melchior CL, Myers RD (1977) Preference for alcohol evoked by tetrahydropapaveroline (THP) chronically infused in the cerebral ventricle of the rat. Pharmacol Biochem Behav 7:19–35

    CAS  PubMed  Google Scholar 

  • Melis M, Enrico P, Peana AT, Diana M (2007) Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system. Eur J Neurosci 26:2824–2833

    CAS  PubMed  Google Scholar 

  • Messiha FS, Geller I (1976) Effect of noreleagnine, a beta-carboline derivative on ethanol preference in the rat. Proc West Pharmacol Soc 19:336–340

    CAS  PubMed  Google Scholar 

  • Myers RD, Melchior CL (1977) Alcohol drinking: abnormal intake caused by tetrahydropapaveroline in brain. Science 196:554–556

    CAS  PubMed  Google Scholar 

  • Myers RD, Oblinger MM (1977) Alcohol drinking in the rat induced by acute intra-cerebral infusion of two tetrahydroisoquinolines and a beta-carboline. Drug Alcohol Depend 2:469–483

    CAS  PubMed  Google Scholar 

  • Myers RD, Privette TH (1989) A neuroanatomical substrate for alcohol drinking: identification of tetrahydropapaveroline (THP)-reactive sites in the rat brain. Brain Res Bull 22:899–911

    CAS  PubMed  Google Scholar 

  • Myers RD, Robinson DE (1999) Tetrahydropapaveroline injected in the ventral tegmental area shifts dopamine efflux differentially in the shell and core of nucleus accumbens in high-ethanol-preferring (HEP) rats. Alcohol 18:83–90

    CAS  PubMed  Google Scholar 

  • Myers RD, Veale WL (1969) Alterations in volitional alcohol intake produced in rats by chronic intraventricular infusions of acetaldehyde, paraldehyde or methanol. Arch Int Pharmacodyn Ther 180:100–113

    CAS  PubMed  Google Scholar 

  • Myers WD, Ng KT, Marzuki S, Myers RD, Singer G (1984) Alteration of alcohol drinking in the rat by peripherally self-administered acetaldehyde. Alcohol 1:229–236

    CAS  PubMed  Google Scholar 

  • Myers WD, Gibson S, Ng KT, Singer G (1987) Sex differences in acetaldehyde on body temperature and open-field performance in the rat. Drug Alcohol Depend 19:1–6

    CAS  PubMed  Google Scholar 

  • Nakahara D, Maruyama W, Hashiguti H, Naoi M (1994) Characterization of the in vivo action of (R)-salsolinol, an endogenous metabolite of alcohol, on serotonin and dopamine metabolism: a microdialysis study. Brain Res 644:226–232

    CAS  PubMed  Google Scholar 

  • National Institute on Alcohol Abuse and Alcoholism (NIAAA) (2008) President’s budget request for NIAAA—Director’s statement before the house subcommittee on labor-HHS appropriations 2008. http://www.niaaa.nih.gov/AboutNIAAA/CongressionalInformation/Testimony/Pages/statement_5_08.aspx

  • Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz A, Griffiths PJ, Littleton JM (1974) A comparison of the effects of chronic administration of ethanol and acetaldehyde to mice: evidence for a role of acetaldehyde in ethanol dependence. J Pharm Pharmacol 26:249–260

    CAS  PubMed  Google Scholar 

  • Padilla-de la Torre M, Franco-Perez J, Santamaria A, Galvan S, Gonzalez E, Paz C (2008) Effect of acetaldehyde on behavioral and neurochemical changes induced by MK-801 in rats. Ann N Y Acad Sci 1139:259–267

    CAS  PubMed  Google Scholar 

  • Peana AT, Enrico P, Assaretti AR, Pulighe E, Muggironi G, Nieddu M, Piga A, Lintas A, Diana M (2008) Key role of ethanol-derived acetaldehyde in the motivational properties induced by intragastric ethanol: a conditioned place preference study in the rat. Alcohol Clin Exp Res 32:249–258

    CAS  PubMed  Google Scholar 

  • Peng GS, Yin SJ (2009) Effect of the allelic variants of Aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum Genomics 3:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen DR, Tabakoff B (1979) Characterization of brain acetaldehyde oxidizing systems in the mouse. Drug Alcohol Depend 4:137–144

    CAS  PubMed  Google Scholar 

  • Pikkarainen PH, Salaspuro MP, Lieber CS (1979) A method for the determination of “free” acetaldehyde in plasma. Alcohol Clin Exp Res 3:259–261

    CAS  PubMed  Google Scholar 

  • Privette TH, Myers RD (1989) Anatomical mapping of tetrahydropapaveroline-reactive sites in brain mediating suppression of alcohol drinking in the rat. Brain Res Bull 22:1039–1048

    CAS  PubMed  Google Scholar 

  • Privette TH, Hornsby RL, Myers RD (1988) Buspirone alters alcohol drinking induced in rats by tetrahydropapaveroline injected into brain monoaminergic pathways. Alcohol 5:147–152

    CAS  PubMed  Google Scholar 

  • Purvis PL, Hirst M, Baskerville JC (1980) Voluntary ethanol consumption in the rat following peripheral administrations of 3-carboxy-salsolinol. Subst Alcohol Actions Misuse 1:439–445

    CAS  PubMed  Google Scholar 

  • Quertemont E, De Witte P (2001) Conditioned stimulus preference after acetaldehyde but not ethanol injections. Pharmacol Biochem Behav 68:449–454

    CAS  PubMed  Google Scholar 

  • Quertemont E, Tambour S, Bernaerts P, Zimatkin SM, Tirelli E (2004) Behavioral characterization of acetaldehyde in C57BL/6J mice: locomotor, hypnotic, anxiolytic and amnesic effects. Psychopharmacology (Berl) 177:84–92

    CAS  Google Scholar 

  • Quertemont E, Grant KA, Correa M, Arizzi MN, Salamone JD, Tambour S, Aragon CM, McBride WJ, Rodd ZA, Goldstein A, Zaffaroni A, Li TK, Pisano M, Diana M (2005) The role of acetaldehyde in the central effects of ethanol. Alcohol Clin Exp Res 29:221–234

    CAS  PubMed  Google Scholar 

  • Quintanilla ME, Tampier L (2003) Acetaldehyde-reinforcing effects: differences in low-alcohol-drinking (UChA) and high-alcohol-drinking (UChB) rats. Alcohol 31:63–69

    CAS  PubMed  Google Scholar 

  • Quintanilla ME, Tampier L, Karahanian E, Rivera-Meza M, Herrera-Marschitz M, Israel Y (2011) Reward and relapse: complete gene-induced dissociation in an animal model of alcohol dependence. Alcohol Clin Exp Res. doi: 10.1111/j.1530-0277.2011.01606.x

  • Raskin NH (1975) Editorial: alcoholism or acetaldehydism? N Engl J Med 292:422–423

    CAS  PubMed  Google Scholar 

  • Reynolds WA, Lowe FH (1965) Mushrooms and a toxic reaction to alcohol: report of four cases. N Engl J Med 272:630–631

    CAS  PubMed  Google Scholar 

  • Rodd ZA, Bell RL, Zhang Y, Goldstein A, Zaffaroni A, McBride WJ, Li TK (2003) Salsolinol produces reinforcing effects in the nucleus accumbens shell of alcohol-preferring (P) rats. Alcohol Clin Exp Res 27:440–449

    CAS  PubMed  Google Scholar 

  • Rodd ZA, Bell RL, Zhang Y, Murphy JM, Goldstein A, Zaffaroni A, Li TK, McBride WJ (2005) Regional heterogeneity for the intracranial self-administration of ethanol and acetaldehyde within the ventral tegmental area of alcohol-preferring (P) rats: involvement of dopamine and serotonin. Neuropsychopharmacology 30:330–338

    CAS  PubMed  Google Scholar 

  • Rodd ZA, Oster SM, Ding ZM, Toalston JE, Deehan G, Bell RL, Li TK, McBride WJ (2008) The reinforcing properties of salsolinol in the ventral tegmental area: evidence for regional heterogeneity and the involvement of serotonin and dopamine. Alcohol Clin Exp Res 32:230–239

    CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, Melendez RI, Zaffaroni A, Goldstein A, McBride WJ, Li TK (2002) The reinforcing effects of acetaldehyde in the posterior ventral tegmental area of alcohol-preferring rats. Pharmacol Biochem Behav 72:55–64

    CAS  PubMed  Google Scholar 

  • Rotzinger S, Smith BR, Amit Z (1994) Catalase inhibition attenuates the acquisition of ethanol and saccharin-quinine consumption in laboratory rats. Behav Pharmacol 5:203–209

    CAS  PubMed  Google Scholar 

  • Seutin V, Massotte L, Renette MF, Dresse A (2001) Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons. Neuroreport 12:255–258

    CAS  PubMed  Google Scholar 

  • Sippel HW (1974) The acetaldehyde content in rat brain during ethanol metabolism. J Neurochem 23:451–452

    CAS  PubMed  Google Scholar 

  • Smith BR, Amit Z, Splawinsky J (1984) Conditioned place preference induced by intraventricular infusions of acetaldehyde. Alcohol 1:193–195

    CAS  PubMed  Google Scholar 

  • Smith BR, Aragon CM, Amit Z (1997) Catalase and the production of brain acetaldehyde: a possible mediator of the psychopharmacological effects of ethanol. Addict Biol 2:277–289

    CAS  Google Scholar 

  • Spina L, Longoni R, Vinci S, Ibba F, Peana AT, Muggironi G, Spiga S, Acquas E (2010) Role of dopamine D1 receptors and extracellular signal regulated kinase in the motivational properties of acetaldehyde as assessed by place preference conditioning. Alcohol Clin Exp Res 34:607–616

    CAS  PubMed  Google Scholar 

  • Stotz E (1943) A colorimetric determination of acetaldehyde in blood. J Biol Chem 148:585–591

    CAS  Google Scholar 

  • Tabakoff B, Anderson RA, Ritzmann RF (1976) Brain acetaldehyde after ethanol administration. Biochem Pharmacol 25:1305–1309

    CAS  PubMed  Google Scholar 

  • Tambour S, Didone V, Tirelli E, Quertemont E (2006) Locomotor effects of ethanol and acetaldehyde after peripheral and intraventricular injections in Swiss and C57BL/6J mice. Behav Brain Res 172:145–154

    CAS  PubMed  Google Scholar 

  • Tampier L, Quintanilla ME, Mardones J (1995) Effects of aminotriazole on ethanol, water, and food intake and on brain catalase in UChA and UChB rats. Alcohol 12:341–344

    CAS  PubMed  Google Scholar 

  • Truitt EB Jr, Walsh MJ (1971) The role of acetaldehyde in the actions of ethanol. In: Kissin B, Begleiter H (eds) The biology of alcoholism. Plenum Press, New York

    Google Scholar 

  • Tuomisto L, Tuomisto J (1973) Inhibition of monoamine uptake in synaptosomes by tetrahydroharmane and tetrahydroisoquinoline compounds. Naunyn Schmiedebergs Arch Pharmacol 279:371–380

    CAS  PubMed  Google Scholar 

  • Tuomisto L, Airaksinen MM, Peura P, Eriksson CJ (1982) Alcohol drinking in the rat: increases following intracerebroventricular treatment with tetrahydro-beta-carbolines. Pharmacol Biochem Behav 17:831–836

    CAS  PubMed  Google Scholar 

  • Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315

    CAS  PubMed  Google Scholar 

  • Walsh MJ, Davis VE, Yamanaka Y (1970) Tetrahydropapaveroline: an alkaloid metabolite of dopamine in vitro. J Pharmacol Exp Ther 174:388–400

    CAS  PubMed  Google Scholar 

  • Ward RJ, Colantuoni C, Dahchour A, Quertemont E, De Witte P (1997) Acetaldehyde-induced changes in monoamine and amino acid extracellular microdialysate content of the nucleus accumbens. Neuropharmacology 36:225–232

    CAS  PubMed  Google Scholar 

  • Weiner H (1980) Estimation of the in vivo concentration of salsolinol and tetrahydropapaveroline in rat brain after the administration of ethanol. Subst Alcohol Actions Misuse 1:317–322

    CAS  PubMed  Google Scholar 

  • Williams EE (1937) Effects of alcohol on workers with carbon disulfide. J Am Med Assoc 109:1472–1473

    Google Scholar 

  • World Health Organization (WHO) (2003) WHO to meet beverage company representatives to discuss health-related alcohol issues 2003. http://www.who.int/mediacentre/news/releases/2003/pr6/en/

  • Yao L, Fan P, Arolfo M, Jiang Z, Olive MF, Zablocki J, Sun HL, Chu N, Lee J, Kim HY, Leung K, Shryock J, Blackburn B, Diamond I (2010) Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use-dependent inhibitor of dopamine synthesis. Nat Med 16:1024–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye JH, Tao L, Ren J, Schaefer R, Krnjevic K, Liu PL, Schiller DA, McArdle JJ (2001) Ethanol potentiation of glycine-induced responses in dissociated neurons of rat ventral tegmental area. J Pharmacol Exp Ther 296:77–83

    CAS  PubMed  Google Scholar 

  • Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res Health 29:245–254

    PubMed  Google Scholar 

  • Zimatkin SM (1991) Histochemical study of aldehyde dehydrogenase in the rat CNS. J Neurochem 56:1–11

    CAS  PubMed  Google Scholar 

  • Zimatkin SM, Liopo AV, Deitrich RA (1998) Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res 22:1623–1627

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Deehan Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deehan, G.A., Brodie, M.S., Rodd, Z.A. (2011). What is in that Drink: The Biological Actions of Ethanol, Acetaldehyde, and Salsolinol. In: Sommer, W., Spanagel, R. (eds) Behavioral Neurobiology of Alcohol Addiction. Current Topics in Behavioral Neurosciences, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28720-6_198

Download citation

Publish with us

Policies and ethics