Skip to main content

Adoptive Cellular Therapy

  • Chapter
  • First Online:
Cancer Immunology and Immunotherapy

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 344))

Abstract

Cell-based therapies with various lymphocytes and antigen-presenting cells are promising approaches for cancer immunotherapy. The transfusion of T lymphocytes, also called adoptive cell therapy (ACT), is an effective treatment for viral infections, has induced regression of cancer in early stage clinical trials, and may be a particularly important and efficacious modality in the period following hematopoietic stem cell transplantation (HSCT). Immune reconstitution post-SCT is often slow and incomplete, which in turn leads to an increased risk of infection and may impact relapse risk in patients with malignant disease. Immunization post-HSCT is frequently unsuccessful, due to the prolonged lymphopenia, especially of CD4 T cells, seen following transplant. ACT has the potential to enhance antitumor and overall immunity, and augment vaccine efficacy in the post-transplant setting. The ability to genetically engineer lymphocyte subsets has the further potential to improve the natural immune response, correct impaired immunity, and redirect T cells to an antitumor effector response. This chapter focuses on various applications of ACT for cancer immunotherapy, and we discuss some of the latest progress and hurdles in translating these technologies to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avigan D, Pirofski L, Lazarus H (2001) Vaccination against infectious disease following hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7:171–183

    Article  PubMed  CAS  Google Scholar 

  • Azuma M, Phillips JH, Lanier LL (1993) CD28- T lymphocytes. Antigenic and functional properties. J Immunol 150:1147–1159

    PubMed  CAS  Google Scholar 

  • Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171:27–31

    PubMed  CAS  Google Scholar 

  • Barrett J, Jiang YZ (2000) Allogeneic immunotherapy for malignant diseases. Marcel Dekker, New York

    Book  Google Scholar 

  • Bataille R, Jourdan M, Zhang X, Klein B (1989) Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 84:2008–2011

    Article  PubMed  CAS  Google Scholar 

  • Berger C, Turtle CJ, Jensen MC, Riddell SR (2009) Adoptive transfer of virus-specific and tumor-specific T cell immunity. Curr Opin Immunol 21:224–232

    Article  PubMed  CAS  Google Scholar 

  • Bondanza A, Valtolina V, Magnani Z, Ponzoni M, Fleischhauer K, Bonyhadi M, Traversari C, Sanvito F, Toma S, Radrizzani M, La Seta-Catamancio S, Ciceri F, Bordignon C, Bonini C (2006) Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood 107:1828–1836

    Article  PubMed  CAS  Google Scholar 

  • Boulter JM, Glick M, Todorov PT, Baston E, Sami M, Rizkallah P, Jakobsen BK (2003) Stable, soluble T cell receptor molecules for crystallization and therapeutics. Protein Eng 16:707–711

    Article  PubMed  CAS  Google Scholar 

  • Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18:666–668

    Article  PubMed  CAS  Google Scholar 

  • Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106:3360–3365

    Article  PubMed  CAS  Google Scholar 

  • Cheung NK, Kushner BH, Kramer K (2001) Monoclonal antibody-based therapy of neuroblastoma. Hematol Oncol Clin North Am 15:853–866

    Article  PubMed  CAS  Google Scholar 

  • Cheung NV, Heller G (1991) Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J Clin Oncol 9:1050–1058

    PubMed  CAS  Google Scholar 

  • Ciceri F, Bonini C, Stanghellini MTL, Bondanza A, Traversari C, Salomoni M, Turchetto L, Colombi S, Bernardi M, Peccatori J (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol 10:489–500

    Article  PubMed  Google Scholar 

  • Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527

    Article  PubMed  CAS  Google Scholar 

  • Clemente C, Mihm M Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1998) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310

    Article  Google Scholar 

  • Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD (2000) Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T cell receptor genes. J Virol 74:8207–8212

    Article  PubMed  CAS  Google Scholar 

  • Curiel T (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • de Visser K, Eichten A, Coussens L (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  CAS  Google Scholar 

  • Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Kwok S, June CH, Lazar R, Broad DF, Jalali S, Hege KM (2002) A phase II randomized study of HIV-specific T cell gene therapy in subjects with undetectable plasma viremia on combination anti-retroviral therapy. Mol Ther 5:788–797

    Article  PubMed  CAS  Google Scholar 

  • Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    PubMed  CAS  Google Scholar 

  • Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, Negrin RS (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Ege H, Gertz MA, Markovic SN, Lacy MQ, Dispenzieri A, Hayman SR, Kumar SK, Porrata LF (2008) Prediction of survival using absolute lymphocyte count for newly diagnosed patients with multiple myeloma: a retrospective study. Br J Haematol 141:792–798

    Article  PubMed  CAS  Google Scholar 

  • Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181

    Article  PubMed  CAS  Google Scholar 

  • Fearon DT, Manders P, Wagner SD (2001) Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293:248–250

    Article  PubMed  CAS  Google Scholar 

  • Fowler DH, Odom J, Steinberg SM, Chow CK, Foley J, Kogan Y, Hou J, Gea-Banacloche J, Sportes C, Pavletic S, Leitman S, Read EJ, Carter C, Kolstad A, Fox R, Beatty GL, Vonderheide RH, Levine BL, June CH, Gress RE, Bishop MR (2006) Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 12:1150–1160

    Article  PubMed  CAS  Google Scholar 

  • George RE, Li S, Medeiros-Nancarrow C, Neuberg D, Marcus K, Shamberger RC, Pulsipher M, Grupp SA, Diller L (2006) High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 24:2891–2896

    Article  PubMed  Google Scholar 

  • Golovina TN, Mikheeva T, Suhoski MM, Aqui NA, Tai VC, Shan X, Liu R, Balcarcel RR, Fisher N, Levine BL, Carroll RC, Warner N, Blazar BR, June CH, Riley JL (2008) CD28 costimulation is essential for human T regulatory expansion and function. J Immunol 181:2855–2868

    PubMed  CAS  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024–10028

    Article  PubMed  CAS  Google Scholar 

  • Grupp SA, Stern JW, Bunin N, Nancarrow C, Adams R, Gorlin JB, Griffin G, Diller L (2000a) Rapid-sequence tandem transplant for children with high-risk neuroblastoma. Med Pediatr Oncol 35:696–700

    Article  PubMed  CAS  Google Scholar 

  • Grupp SA, Stern JW, Bunin N, Nancarrow C, Ross AA, Mogul M, Adams R, Grier HE, Gorlin JB, Shamberger R, Marcus K, Neuberg D, Weinstein HJ, Diller L (2000b) Tandem high-dose therapy in rapid sequence for children with high-risk neuroblastoma. J Clin Oncol 18:2567–2575

    PubMed  CAS  Google Scholar 

  • Guimond M, Veenstra R, Grindler D, Zhang H, Cui Y, Murphy R, Kim S, Na R, Hennighausen L, Kurtulus S (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, Macintyre E, Dal CL, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  PubMed  CAS  Google Scholar 

  • Hakim F, Cepeda R, Kaimei S, Mackall C, McAtee N, Zujewski J, Cowan K, Gress R (1997) Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90:3789–3798

    PubMed  CAS  Google Scholar 

  • Hamza N, Lisgaris M, Yadavalli G, Nadeau L, Fox R, Fu P, Lazarus H, Koc O, Salata R, Laughlin M (2004) Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol 124:488–498

    Article  PubMed  Google Scholar 

  • Hasan A, Kollen W, Trivedi D, Selvakumar A, Dupont B, Sadelain M, O'Reilly R (2009) A panel of artificial APCs Expressing prevalent HLA alleles permits generation of cytotoxic T cells specific for both dominant and subdominant viral epitopes for adoptive therapy. J Immunol 183:2837–2850

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs C, Kaiser A, Paulos C, Cassard L, Sanchez-Perez L, Heemskerk B, Wrzesinski C, Borman Z, Muranski P, Restifo N (2009) Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 114:596–599

    Article  PubMed  CAS  Google Scholar 

  • Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107:1528–1536

    Article  PubMed  CAS  Google Scholar 

  • Hoyle C, Goldman JM (1994) Life-threatening infections occurring more than 3 months after BMT. Bone Marrow Transplant 14:247–252

    PubMed  CAS  Google Scholar 

  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, Vanwaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  PubMed  CAS  Google Scholar 

  • June CH (2007) Principles of adoptive T cell cancer therapy. J Clin Invest 117:1204–1212

    Article  PubMed  CAS  Google Scholar 

  • June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716

    Article  PubMed  CAS  Google Scholar 

  • Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2:415–422

    PubMed  CAS  Google Scholar 

  • Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M (2004) Optimization of human T cell expansion exvivo using magnetic beads conjugated with anti-CD3 and Anti-CD28 antibodies. J Immunother 27:405–418

    Article  PubMed  CAS  Google Scholar 

  • Kim JV, Latouche JB, Riviere I, Sadelain M (2004) The ABCs of artificial antigen presentation. Nat Biotechnol 22:403–410

    Article  PubMed  CAS  Google Scholar 

  • King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277

    Article  PubMed  CAS  Google Scholar 

  • Kletzel M, Katzenstein HM, Haut PR, Yu AL, Morgan E, Reynolds M, Geissler G, Marymount MH, Liu D, Kalapurakal JA, Shore RM, Bardo DM, Schmoldt J, Rademaker AW, Cohn SL (2002) Treatment of high-risk neuroblastoma with triple-tandem high-dose therapy and stem-cell rescue: results of the Chicago Pilot II Study. J Clin Oncol 20:2284–2292

    Article  PubMed  CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  • Kroon F, van Dissel J, de Jong J, van Furth R (1994) Antibody response to influenza, tetanus and pneumococcal vaccines in HIV-seropositive individuals in relation to the number of CD4+ lymphocytes. Aids 8:469–476

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling T (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22

    Article  PubMed  Google Scholar 

  • Landmeier S, Altvater B, Pscherer S, Eing BR, Kuehn J, Rooney CM, Juergens H, Rossig C (2007) Gene-engineered varicella-zoster virus reactive CD4+ cytotoxic T cells exert tumor-specific effector function. Cancer Res 67:8335–8343

    Article  PubMed  CAS  Google Scholar 

  • Langowski JL, Zhang XQ, Wu LL, Mattson JD, Chen TY, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 17:326–332

    Article  PubMed  CAS  Google Scholar 

  • Laport GG, Levine BL, Stadtmauer EA, Schuster SJ, Luger SM, Grupp S, Bunin N, Strobl FJ, Cotte J, Zheng Z, Gregson B, Rivers P, Vonderheide RH, Liebowitz DN, Porter DL, June CH (2003) Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin's lymphoma following CD34-selected hematopoietic cell transplantation. Blood 102:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Latouche JB, Sadelain M (2000) Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 18:405–409

    Article  PubMed  CAS  Google Scholar 

  • Lerner B (2004) Sins of omission–cancer research without informed consent. N Engl J Med 351:628

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Bernstein W, Connors M, Craighead N, Lindsten T, Thompson C, June C (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159:5921–5930

    PubMed  CAS  Google Scholar 

  • Levine BL, Ueda Y, Craighead N, Huang ML, June CH (1995) CD28 ligands CD80 (B7-1) and CD86 (B&-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. Int Immunol 7:891–904

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Lone YC, Motta I, Mottez E, Guilloux Y, Lim A, Demay F, Levraud JP, Kourilsky P, Abastado JP (1998) In vitro induction of specific cytotoxic T lymphocytes using recombinant single-chain MHC class I/peptide complexes. J Immunother 21:283–294

    Article  PubMed  CAS  Google Scholar 

  • Luxembourg AT, Borrow P, Teyton L, Brunmark AB, Peterson PA, Jackson MR (1998) Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat Biotechnol 16:281–285

    Article  PubMed  CAS  Google Scholar 

  • Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T cell regenerative pathways result in prolonged T cell subset imbalance after intensive chemotherapy. Blood 89:3700–3707

    PubMed  CAS  Google Scholar 

  • Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20:70–75

    Article  PubMed  CAS  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  • Martin-Orozco N, Muranski P, Chung Y, Yang X, Yamazaki T, Lu S, Hwu P, Restifo N, Overwijk W, Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798

    Article  PubMed  CAS  Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer group. N Engl J Med 341:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Maus MV, Kovacs B, Kwok WW, Nepom GT, Schlienger K, Riley JL, Allman D, Finkel TH, June CH (2004) Extensive replicative capacity of human central memory T cells. J Immunol 172:6675–6683

    PubMed  CAS  Google Scholar 

  • Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, Schlienger K, Riley JL, June CH (2002) Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T cell receptor, CD28 and 4-1BB. Nat Biotechnol 20:143–148

    Article  PubMed  CAS  Google Scholar 

  • Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, net-Desnoyers G, Campana D, Riley JL, Grupp G, June CH (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:1453–1464

    Article  PubMed  CAS  Google Scholar 

  • Mitchison NA (1955) Studies on the immunological response to foreign tumor transplants in the mouse I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med 102:157–177

    Article  PubMed  CAS  Google Scholar 

  • Molrine D, Guinan E, Antin J, Parsons S, Weinstein H, Wheeler C, McGarigle C, Blanding P, Phillips N, Kinsella K (1996) Donor immunization with Haemophilus influenzae type b (HIB)-conjugate vaccine in allogeneic bone marrow transplantation. Blood 87:3012–3018

    PubMed  CAS  Google Scholar 

  • Morgan R, Yang J, Kitano M, Dudley M, Laurencot C, Rosenberg S (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Fusenig N (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373

    Article  PubMed  CAS  Google Scholar 

  • Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z, Carter CS, Garabedian EK, Alleyne M, Brown M, Bernstein W, Schurman SH, Fleisher TA, Leitman SF, Dunbar CE, Blaese RM, Candotti F (2003) Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101:2563–2569

    Article  PubMed  CAS  Google Scholar 

  • Nguyen P, Moisini I, Geiger T (2003) Identification of a murine CD28 dileucine motif that suppresses single-chain chimeric T cell receptor expression and function. Blood 102:4320

    Article  PubMed  CAS  Google Scholar 

  • Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig coated artificial antigen presenting cells. Nat Med 9:619–625

    Article  PubMed  CAS  Google Scholar 

  • Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg JR, Jensen MC (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15:825–833

    PubMed  CAS  Google Scholar 

  • Porrata LF, Gertz MA, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A, Gastineau DA, Dispenzieri A, Ansell SM, Micallef IN, Geyer SM, Markovic SN (2001) Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 98:579–585

    Article  PubMed  CAS  Google Scholar 

  • Porter DL, Levine BL, Bunin N, Stadtmauer EA, Luger SM, Goldstein S, Loren A, Phillips J, Nasta S, Perl A, Schuster S, Tsai D, Sohal A, Veloso E, Emerson SG, June CH (2006) A phase I trial of donor lymphocyte infusions expanded and activated ex-vivo via CD3/CD28 co-stimulation. Blood 107:1325–1331

    Article  PubMed  CAS  Google Scholar 

  • Powell JL, Bunin NJ, Callahan C, Aplenc R, Griffin G, Grupp SA (2004) An unexpectedly high incidence of Epstein-Barr virus lymphoproliferative disease after CD34+ selected autologous peripheral blood stem cell transplant in neuroblastoma. Bone Marrow Transplant 33:651–657

    Article  PubMed  CAS  Google Scholar 

  • Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM and Brenner MK (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12:933–941

    Google Scholar 

  • Pule M, Savoldo B, Myers G, Rossig C, Russell H, Dotti G, Huls M, Liu E, Gee A, Mei Z (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14:1264–1270

    Article  PubMed  CAS  Google Scholar 

  • Pulle G, Vidric M, Watts TH (2006) IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J Immunol 176:2739–2748

    PubMed  CAS  Google Scholar 

  • Rapoport A, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, Veloso EA, Zheng Z, Westphal S, Mair R, Chi N, Ratterree B, Pochran MF, Natt S, Hinkle J, Sickles C, Sohal A, Ruehle K, Lynch C, Zhang L, Porter DL, Luger S, Guo C, Fang HB, Blackwelder W, Hankey K, Mann D, Edelman R, Frasch C, Levine BL, Cross A, June CH (2005) Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T cell transfer. Nat Med 11:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Rapoport AP, Stadtmauer EA, Aqui N, Vogl D, Chew A, Fang HB, Janofsky S, Yager K, Veloso E, Zheng Z, Milliron T, Westphal S, Cotte J, Huynh H, Cannon A, Yanovich S, Akpek G, Tan M, Virts K, Ruehle K, Harris C, Philip S, Vonderheide RH, Levine BL, June CH (2009) Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of costimulated autologous T cells. Clin Cancer Res 15:4499–4507

    Article  PubMed  CAS  Google Scholar 

  • Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201

    Article  PubMed  CAS  Google Scholar 

  • Riley JL, June CH, Blazar BR (2009) Human T regulatory cell therapy: take a billion and call me in the morning. Immunity 30:656–665

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL (1990) Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578

    Article  PubMed  CAS  Google Scholar 

  • Rossig C, Bollard CM, Nuchtern JG, Merchant DA, Brenner MK (2001) Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T cell receptor genes. Int J Cancer 94:228–236

    Article  PubMed  CAS  Google Scholar 

  • Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, Roosnek E (1996) Analysis of T cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T cell depleted and unmanipulated grafts. Blood 87:3984–3992

    PubMed  CAS  Google Scholar 

  • Sadelain M, Brentjens R, Riviere I (2009) The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 21:215–223

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  PubMed  CAS  Google Scholar 

  • Salomon B, Lenschow D, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone J (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  PubMed  CAS  Google Scholar 

  • Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J, Delgado JC, Gribben JG, Nadler LM (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100:2757–2765

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TN (2002) T cell-receptor gene therapy. Nat Rev Immunol 2:512–519

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Darrah PA, Roederer M (2008) T cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 211:58–66

    Google Scholar 

  • Simon T, Hero B, Faldum A, Handgretinger R, Schrappe M, Niethammer D, Berthold F (2004) Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J Clin Oncol 22:3549–3557

    Article  PubMed  CAS  Google Scholar 

  • Southam CM, Brunschwig A, Levin AG, Dizon QS (1966) Effect of leukocytes on transplantability of human cancer. Cancer 19:1743–1753

    Article  PubMed  CAS  Google Scholar 

  • Storek J, Dawson M, Lim L, Burman B, Stevens-Ayers T, Viganego F, Herremans M, Flowers M, Witherspoon R, Maloney D (2003) Efficacy of donor vaccination before hematopoietic cell transplantation and recipient vaccination both before and early after transplantation. Bone Marrow Transplant 33:337–346

    Article  Google Scholar 

  • Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA, Witherspoon RP, Bensinger W, Flowers ME, Martin P, Storb R, Appelbaum FR, Boeckh M (2001) Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 97:3380–3389

    Article  PubMed  CAS  Google Scholar 

  • Storek J, Zhao Z, Lin E, Berger T, McSweeney P, Nash R, Akatsuka Y, Metcalf M, Lu H, Kalina T (2004) Recovery from and consequences of severe iatrogenic lymphopenia (induced to treat autoimmune diseases). Clin Immunol 113:285–298

    Article  PubMed  CAS  Google Scholar 

  • Suhoski MM, Golovina T, Aqui NA, Tai VC, Varela R, MiloneMc CRG, Riley JL, June CH (2007) Engineering artificial antigen presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15:981–988

    Article  PubMed  CAS  Google Scholar 

  • Surh C, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862

    Article  PubMed  CAS  Google Scholar 

  • Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99:3493–3499

    Article  PubMed  CAS  Google Scholar 

  • Thedrez A, Sabourin C, Gertner J, Devilder MC, lain-Maillet S, Fournie JJ, Scotet E, Bonneville M (2007) Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 215:123–135

    Article  PubMed  CAS  Google Scholar 

  • Thomas ED (1999) Bone marrow transplantation: a review. Semin Hematol 36:95–103

    PubMed  CAS  Google Scholar 

  • Turtle C, Swanson H, Fujii N, Estey E, Riddell S (2009) A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31:834–844

    Article  PubMed  CAS  Google Scholar 

  • van der Veeken LT, Coccoris M, Swart E, Falkenburg JH, Schumacher TN, Heemskerk MH (2009) Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J Immunol 182:164–170

    Google Scholar 

  • Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski M, Carroll RG, Milicic A, Mahon T, Suttton DH, Laugel BE, Moysy R, Cameron BJ, Vuidepot A, Prubhoo ME, Cole DK, Philllps RE, June CH, Jakobsen BK, Sewell AK, Riley JL (2008) Control of HIV-1 immune escape by CD8 T cells expressing enhanced T cell receptor. Nat Med 14:1390–1395 [Epub 2008 Nov 1399]

    Google Scholar 

  • Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, Storb R (1979) Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 300:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Weng NP (2006) Aging of the immune system: How much can the adaptive immune system adapt? Immunity 24:495–499

    Article  PubMed  CAS  Google Scholar 

  • Weng NP, Levine BL, June CH, Hodes RJ (1997) Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J Immunol 158:3215–3220

    PubMed  CAS  Google Scholar 

  • Woo EY, Chu CS, Goletz TJ, Schlienger K, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  • Zhang H, Snyder K, Suhoski MM, Maus MV, Kapoor V, June CH, Mackall CL (2007) 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J Immunol 179:4910–4918

    PubMed  CAS  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG (2005) Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 175:7046–7052

    PubMed  CAS  Google Scholar 

  • Zhou L, Chong M, Littman D (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Zhu G, Luo L, Flies AS, Chen L (2007) CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 109:4882–4889

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Public Health Service grant 1R01CA120409 and 5P01-CA-066726 to C.H.J and R21CA110516 to S.G. Additional support provided by the Weinberg Foundation and W.W. Smith Charitable Trust to S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl H. June .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grupp, S.A., June, C.H. (2010). Adoptive Cellular Therapy. In: Dranoff, G. (eds) Cancer Immunology and Immunotherapy. Current Topics in Microbiology and Immunology, vol 344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_94

Download citation

Publish with us

Policies and ethics