Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

Hsp90 is an essential and ubiquitous molecular chaperone that is required for the proper folding of a set of client proteins at a late stage in their folding process. In eukaryotes, cytoplasmic Hsp90 is absolutely essential for cell viability under all growth conditions. The functional cycle of the Hsp90 system requires a cohort of cochaperones and cofactors that regulate the activity of this chaperone. Hence, Hsp90 function is highly complex; in order to understand that complexity, several groups have attempted to map out the interaction network of this chaperone in yeast and mammalian systems using the latest available proteomic and genomic tools. Interaction networks emerging from these large scale efforts clearly demonstrate that Hsp90 plays a central role effecting multiple pathways and cellular processes. In yeast Saccharomyces cerevisiae, Hsp90 was shown to interact directly or indirectly with at least 10% of the yeast ORFs. The systematic application of large scale approaches to map out the Hsp90 chaperone network should allow the determination of the mechanisms employed by this chaperone system to maintain protein homeostasis in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchner J. Hsp90 & Co.-A holding for folding. Trends Biochem Sci 1999; 24(4):136–141.

    Article  PubMed  CAS  Google Scholar 

  2. Nathan DF, Vos MH, Lindquist S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 1997; 94(24):12949–12956.

    Article  PubMed  CAS  Google Scholar 

  3. Pratt WB, Galigniana MD, Morishima Y et al. Role of molecular chaperones in steroid receptor action. Essays Biochem 2004; 40:41–58.

    PubMed  CAS  Google Scholar 

  4. Sreedhar AS, Soti C, Csermely P. Inhibition of Hsp90: A new strategy for inhibiting protein kinases. Biochim Biophys Acta 2004; 1697(1–2):233–242.

    PubMed  CAS  Google Scholar 

  5. Young JC, Moarefi I, Hartl FU. Hsp90: A specialized but essential protein-folding tool. J Cell Biol 2001; 154(2):267–273.

    Article  PubMed  CAS  Google Scholar 

  6. Terasawa K, Minami M, Minami Y. Constantly updated knowledge of Hsp90. J Biochem (Tokyo) 2005; 137(4):443–447.

    Article  PubMed  CAS  Google Scholar 

  7. Beliakoff J, Whitesell L. Hsp90: An emerging target for breast cancer therapy. Anticancer Drugs 2004; 15(7):651–662.

    Article  PubMed  CAS  Google Scholar 

  8. Workman P. Altered states: Selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004; 10(2):47–51.

    Article  PubMed  CAS  Google Scholar 

  9. Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 2000; 25(1):24–28.

    Article  PubMed  CAS  Google Scholar 

  10. Prodromou C, Panaretou B, Chohan S et al. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 2000; 19(16):4383–4392.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao R, Houry WA. Hsp90: A chaperone for protein folding and gene regulation. Biochem Cell Biol 2005; 83(6):703–710.

    Article  PubMed  CAS  Google Scholar 

  12. Richter K, Muschler P, Hainzl O et al. Sti1 is a noncompetitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 2003; 278(12):10328–10333.

    Article  PubMed  CAS  Google Scholar 

  13. Wegele H, Haslbeck M, Reinstein J et al. Sti1 is a novel activator of the Ssa proteins. J Biol Chem 2003; 278(28):25970–25976.

    Article  PubMed  CAS  Google Scholar 

  14. Panaretou B, Siligardi G, Meyer P et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 2002; 10(6):1307–1318.

    Article  PubMed  CAS  Google Scholar 

  15. Lotz GP, Lin H, Harst A et al. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 2003; 278(19):17228–17235.

    Article  PubMed  CAS  Google Scholar 

  16. Wandinger SK, Suhre MH, Wegele H et al. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 2006; 25(2):367–376.

    Article  PubMed  CAS  Google Scholar 

  17. Bali P, Pranpat M, Bradner J et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005; 280(29):26729–26734.

    Article  PubMed  CAS  Google Scholar 

  18. Kovacs JJ, Murphy PJ, Gaillard S et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005; 18(5):601–607.

    Article  PubMed  CAS  Google Scholar 

  19. Lane CS. Mass spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 2005; 62(7–8):848–869.

    PubMed  CAS  Google Scholar 

  20. Zhao R, Davey M, Hsu YC et al. Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005; 120(5):715–727.

    Article  PubMed  CAS  Google Scholar 

  21. Puig O, Caspary F, Rigaut G et al. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 2001; 24(3):218–229.

    Article  PubMed  CAS  Google Scholar 

  22. Falsone SF, Gesslbauer B, Tirk F et al. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 2005; 579(28):6350–6354.

    Article  PubMed  CAS  Google Scholar 

  23. Chen B, Piel WH, Gui L et al. The HSP90 family of genes in the human genome: Insights into their divergence and evolution. Genomics 2005; 86(6):627–637.

    Article  PubMed  CAS  Google Scholar 

  24. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989; 340(6230):245–246.

    Article  PubMed  CAS  Google Scholar 

  25. Passinen S, Valkila J, Manninen T et al. The C-terminal half of Hsp90 is responsible for its cytoplasmic localization. Eur J Biochem 2001; 268(20):5337–5342.

    Article  PubMed  CAS  Google Scholar 

  26. Millson SH, Truman AW, Piper PW. Vectors for N-or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. Biotechniques 2003; 35:60–64.

    PubMed  CAS  Google Scholar 

  27. Millson SH, Truman AW, Wolfram F et al. Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: Potential uses and limitations of this approach. Cell Stress Chaperones (Winter) 2004; 9(4):359–368.

    Article  PubMed  CAS  Google Scholar 

  28. Millson SH, Truman AW, King V et al. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 2005; 4(5):849–860.

    Article  PubMed  CAS  Google Scholar 

  29. Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403(6770):623–627.

    Article  PubMed  CAS  Google Scholar 

  30. Tong AH, Evangelista M, Parsons AB et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001; 294(5550):2364–2368.

    Article  PubMed  CAS  Google Scholar 

  31. Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418(6896):387–391.

    Article  PubMed  CAS  Google Scholar 

  32. Shoemaker DD, Lashkari DA, Morris D et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 1996; 14(4):450–456.

    Article  PubMed  CAS  Google Scholar 

  33. Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999; 285(5429):901–906.

    Article  PubMed  CAS  Google Scholar 

  34. Tong AH, Boone C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 2006; 313:171–192.

    PubMed  CAS  Google Scholar 

  35. Nathan DF, Lindquist S. Mutational analysis of Hsp90 function: Interactions with a steroid receptor and a protein kinase. Mol Cell Biol 1995; 15(7):3917–3925.

    PubMed  CAS  Google Scholar 

  36. Wang CW, Stromhaug PE, Shima J et al. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 2002; 277(49):47917–47927.

    Article  PubMed  CAS  Google Scholar 

  37. Wang CW, Stromhaug PE, Kauffman EJ et al. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 2003; 163(5):973–985.

    Article  PubMed  CAS  Google Scholar 

  38. Dolinski KJ, Cardenas ME, Heitman J. CNS1 encodes an essential p60/Sti1 homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90. Mol Cell Biol 1998; 18(12):7344–7352.

    PubMed  CAS  Google Scholar 

  39. Houry WA, Frishman D, Eckerskorn C et al. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999; 402(6758):147–154.

    Article  PubMed  CAS  Google Scholar 

  40. Kerner MJ, Naylor DJ, Ishihama Y et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 2005; 122(2):209–220.

    Article  PubMed  CAS  Google Scholar 

  41. Iyer K, Burkle L, Auerbach D et al. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci STKE 2005; 2005(275):p13.

    Article  Google Scholar 

  42. Miller JP, Lo RS, Ben-Hur A et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA 2005; 102(34):12123–12128.

    Article  PubMed  CAS  Google Scholar 

  43. Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 2005; 4(1):27–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Houry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zhao, R., Houry, W.A. (2007). Molecular Interaction Network of the Hsp90 Chaperone System. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_3

Download citation

Publish with us

Policies and ethics