Skip to main content

The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles

  • Chapter
Book cover Eukaryotic Membranes and Cytoskeleton

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 607))

Abstract

Eukaryotic cilia and flagella are motile organelles built on a scaffold of doublet microtubules and powered by dynein ATPase motors. Some thirty years ago, two competing views were presented to explain how the complex machinery of these motile organelles had evolved. Overwhelming evidence now refutes the hypothesis that they are the modified remnants of symbiotic spirochaete-like prokaryotes, and supports the hypothesis that they arose from a simpler cytoplasmic microtubule-based intracellular transport system. However, because intermediate stages in flagellar evolution have not been found in living eukaryotes, a clear understanding of their early evolution has been elusive. Recent progress in understanding phylogenetic relationships among present day eukaryotes and in sequence analysis of flagellar proteins have begun to provide a clearer picture of the origins of doublet and triplet microtubules, flagellar dynein motors, and the 9+2 microtubule architecture common to these organelles. We summarize evidence that the last common ancestor of all eukaryotic organisms possessed a 9+2 flagellum that was used for gliding motility along surfaces, beating motility to generate fluid flow, and localized distribution of sensory receptors, and trace possible earlier stages in the evolution of these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKean PG, Baines A, Vaughan S et al. Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr Biol 2003; 13(7):598–602.

    Article  PubMed  CAS  Google Scholar 

  2. Smith EF, Yang P. The radial spokes and central apparatus: Mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 2004; 57:8–17.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell DR. Reconstruction of the projection periodicity and surface architecture of the flagellar central pair complex. Cell Motil Cytoskeleton 2003; 55:188–99.

    Article  PubMed  Google Scholar 

  4. Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003; 15(l):96–104.

    Article  PubMed  CAS  Google Scholar 

  5. Rosenbaum J. Intraflagellar transport. Curr Biol 2002; 12(4):R125.

    Article  PubMed  CAS  Google Scholar 

  6. Scholey JM. Intraflagellar transport. Annu Rev Cell Dev Biol 2003; 19:423–43.

    Article  PubMed  CAS  Google Scholar 

  7. Simpson AG, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol 2004; 14(17):R693–R696.

    Article  PubMed  CAS  Google Scholar 

  8. Baldauf SL. The deep roots of eukaryotes. Science 2003; 300(5626): 1703–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cavalier-Smith T, Chao EE. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 2003; 56(5):540–63.

    Article  PubMed  CAS  Google Scholar 

  10. Lang BF, O’Kelly C, Nerad T et al. The closest unicellular relatives of animals. Curr Biol 2002; 12(20):1773–8.

    Article  PubMed  CAS  Google Scholar 

  11. Bapteste E, Gribaldo S. The genome reduction hypothesis and the phylogeny of eukaryotes. Trends Genet 2003; 19(12):696–700.

    Article  PubMed  CAS  Google Scholar 

  12. Stechmann A, Cavalier-Smith T. Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol 2003; 57(4):408–19.

    Article  PubMed  CAS  Google Scholar 

  13. Steenkamp ET, Baldauf SL. Origin and evolution of animals, fungi and their unicellular allies (Opisthokonta). In: Hirt RP, Horner DS, eds. Organelles, Genomes and Eukaryote Phylogeny. Boca Raton: CRC Press, 2004:109–29.

    Google Scholar 

  14. Nikolaev SI, Berney C, Fahrni JF et al. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 2004; 101(21):8066–71.

    Article  PubMed  CAS  Google Scholar 

  15. Cavalier-Smith T, Chao EEY. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 2003; 56(4):387–96.

    Article  PubMed  CAS  Google Scholar 

  16. Pazour GJ, Agrin N, Leszyk J et al. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005; 170:103–13.

    Article  PubMed  CAS  Google Scholar 

  17. Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309(5733):416–22.

    Article  PubMed  CAS  Google Scholar 

  18. Avidor-Reiss T, Maer AM, Koundakjian E et al. Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis. Cell 2004; 117(4):527–39.

    Article  PubMed  CAS  Google Scholar 

  19. Li JB, Gerdes JM, Haycraft CJ et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117(4):54l–52.

    Article  Google Scholar 

  20. Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002; 52(Pt 2):297–354.

    PubMed  CAS  Google Scholar 

  21. Moestrup O. The flagellate cytoskeleton. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:69–94.

    Google Scholar 

  22. McKean PG, Vaughan S, Gull K. The extended tubulin superfamily. J Cell Sci 2001; H4(15):2723–33.

    Google Scholar 

  23. Amos LA, van den EF, Lowe J. Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 2004; 16(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  24. Gitai Z. The new bacterial cell biology: Moving parts and subcellular architecture. Cell 2005; 120(5):577–86.

    Article  PubMed  CAS  Google Scholar 

  25. Dutcher SK. The tubulin fraternity: Alpha to eta. Curr Opin Cell Biol 2001; 13:49–54.

    Article  PubMed  CAS  Google Scholar 

  26. Dutcher SK. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic 2003; 4(7):443–51.

    Article  PubMed  CAS  Google Scholar 

  27. Ruiz F, Krzywicka A, Klotz C et al. The SMI9 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin. Curr Biol 2000; 10(22): 1451–4.

    Article  PubMed  CAS  Google Scholar 

  28. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG et al. Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J Cell Biol 2002; 158(7):1183–93.

    Article  PubMed  CAS  Google Scholar 

  29. Dutcher SK. Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 2003; 6(6):634–40.

    Article  PubMed  CAS  Google Scholar 

  30. Iyer LM, Leipe DD, Koonin EV et al. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004; 146(1–2):11–31.

    Article  PubMed  CAS  Google Scholar 

  31. Asai DJ, Koonce MF. The dynein heavy chain: Structure, mechanics and evolution. TICB 2001; 11(5):196–202.

    CAS  Google Scholar 

  32. Iyer LM, Makarova KS, Koonin EV et al. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: Implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004; 32(17):5260–79.

    Article  PubMed  CAS  Google Scholar 

  33. Gibbons BH, Asai DJ, Tang W-JY et al. Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol Biol Cell 1994; 5:57–70.

    PubMed  CAS  Google Scholar 

  34. Asai DJ, Wilkes DE. The dynein heavy chain family. J Euk Microbiol 2004; 51(l):23–9.

    Article  PubMed  CAS  Google Scholar 

  35. Porter ME. Axonemal dyneins: Assembly, organization, and regulation. Curr Opin Cell Biol 1996; 8:10–7.

    Article  PubMed  CAS  Google Scholar 

  36. Porter ME, Sale WS. The 9+2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000; 151(5):F37–F42.

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell DR. Chlamydomonas flagella. J Phycol 2000; 36:261–73.

    Article  CAS  Google Scholar 

  38. Miki H, Setou M, Hirokawa N. Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Res 2003; 13(6B):1455–65.

    Article  PubMed  CAS  Google Scholar 

  39. Bernstein M, Beech PL, Katz SG et al. A new kinesin-like protein (Klpl) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol 1994; 125:1313–26.

    Article  PubMed  CAS  Google Scholar 

  40. Yokoyama R, O’Toole E, Ghosh S et al. Regulation of flagellar dynein by a central pair kinesin. Proc Natl Acad Sci USA 2004; 101:17398–403.

    Article  PubMed  CAS  Google Scholar 

  41. Kubai DF. The evolution of the mitotic spindle. Int Rev Cytol 1975; 43:167–227.

    Article  PubMed  CAS  Google Scholar 

  42. Cavalier-Smith T. The evolutionary origin and phylogeny of eukaryote flagella. Symp Soc Exp Biol 1982; 35:465–93.

    PubMed  CAS  Google Scholar 

  43. Cavalier-Smith T. The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella. Biosystems 1978; 10(l–2):93–114.

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell DR. Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell 2004; 96(9):691–6.

    Article  PubMed  CAS  Google Scholar 

  45. Arndt H, Dietrich D, Auer B et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:240–68.

    Google Scholar 

  46. Sleigh MA. Trophic strategies. In: Leadbeater BCS, Green J, eds. The Flagellates. London: Taylor and Francis, 2000:147–65.

    Google Scholar 

  47. Mitchell DR. Regulation of eukaryotic flagellar motility. Am Inst Phys Conf Proc 2005; 555:130–6.

    Google Scholar 

  48. Gibbons IR. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Bioch Cyt 1961; 11:179–205.

    Article  CAS  Google Scholar 

  49. Sale WS. The axonemal axis and calcium-induced asymmetry of active microtubule sliding in sea urchin sperm tails. J Cell Biol 1986; 102:2042–52.

    Article  PubMed  CAS  Google Scholar 

  50. Tamm SL, Tamm S. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 1981; 89:495–509.

    Article  PubMed  CAS  Google Scholar 

  51. Melkonian M, Robenek H, and Rassat J. Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. J Cell Sci 1982; 55:115–35.

    PubMed  CAS  Google Scholar 

  52. Omoto CK, Gibbons IR, Kamiya R et al. Rotation of the central pair microtubules in eukaryotic flagella. Mol Biol Cell 1999; 10(1):l–4.

    Google Scholar 

  53. Mitchell DR, Nakatsugawa M. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. J Cell Biol 2004; 166(5):709–15.

    Article  PubMed  CAS  Google Scholar 

  54. Omoto CK, Witman GB. Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature 1981; 290:708–10.

    Article  PubMed  CAS  Google Scholar 

  55. Omoto CK, Kung C. Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol 1980; 87(l):33–46.

    Article  PubMed  CAS  Google Scholar 

  56. Jarosch R, Fuchs B. On the rotation of fibrils in the synura-flagellum (author’s transi). Protoplasma 1975; 85(2–4):285–90.

    Article  PubMed  CAS  Google Scholar 

  57. Baccetti B. Evolutionary trends in sperm structure. Comp Biochem Physiol A 1986; 85(l):29–36.

    Article  PubMed  CAS  Google Scholar 

  58. Prensier G, Vivier E, Goldstein S et al. Motile flagellum with a “3 + 0” ultrastructure. Science 1980; 207:1493–4.

    Article  PubMed  CAS  Google Scholar 

  59. Nonaka S, Tanaka Y, Okada Y et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95(6):829–37.

    Article  PubMed  CAS  Google Scholar 

  60. Gibbons BH, Gibbons IR, Baccetti B. Structure and motility of the 9 + 0 flagellum of eel spermatozoa. J Submicrosc Cytol 1983; 15:15–20.

    PubMed  CAS  Google Scholar 

  61. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004; 71(2):540–7.

    Article  PubMed  CAS  Google Scholar 

  62. Lardy HA, Phillips PH. The interrelation of oxidative and glycolytic processes as sources of energy for bull spermatozoa. American Journal of Physiology 1941; 133:602–9.

    CAS  Google Scholar 

  63. Hsu SC, Molday RS. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J Biol Chem 1991; 266(32):21745–52.

    PubMed  CAS  Google Scholar 

  64. Westhoff D, Kamp G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J Cell Sci 1997; 110(Pt 15):1821–9.

    PubMed  CAS  Google Scholar 

  65. Gitlits VM, Toh BH, Loveland KL et al. The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 2000; 79:104–11.

    Article  PubMed  CAS  Google Scholar 

  66. Mitchell BF, Pedersen LB, Feely M et al. ATP production in Chlamydomonas reinhardii flagella by glycotytic enzymes. Mol Biol Cell 2005; 16:4509–18.

    Article  PubMed  CAS  Google Scholar 

  67. Tombes RM, Brokaw CJ, Shapiro BM. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J 1987; 52(1):75–86.

    Article  PubMed  CAS  Google Scholar 

  68. Huszar G, Sbracia M, Vigue L et al. Sperm plasma membrane remodeling during spermiogenetic maturation in men: Relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod 1997; 56(4):1020–4.

    Article  PubMed  CAS  Google Scholar 

  69. Wallimann T, Wegmann G, Moser H et al. High content of creatine kinase in chicken retina: Compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 1986; 83(11):38l6–9.

    Article  Google Scholar 

  70. Noguchi M, Sawadas T, Akazawa T. ATP-regenerating system in the cilia of Paramecium caudatum. J Exp Biol 2001; 204(6):1063–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Mitchell .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mitchell, D.R. (2007). The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles. In: Eukaryotic Membranes and Cytoskeleton. Advances in Experimental Medicine and Biology, vol 607. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74021-8_11

Download citation

Publish with us

Policies and ethics