Skip to main content

Milk Peptides and Immune Response in the Neonate

  • Chapter
Bioactive Components of Milk

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 606))

Abstract

Bioactive peptides encrypted within the native milk proteins can be released by enzymatic proteolysis, food processing, or gastrointestinal digestion. These peptides possess a wide range of properties, including immunomodulatory properties. The first months of life represent a critical period for the maturation of the immune system because a tolerance for nutrient molecules should be developed while that for pathogen-derived antigens is avoided. Evidence has accumulated to suggest that milk peptides may regulate gastrointestinal immunity, guiding the local immune system until it develops its full functionality. Our data using the weaning piglet as the model suggest that several milk peptides can downregulate various immune properties at a time (one to two weeks after weaning) that coincides with immaturity of the immune system. The protein kinase A system and/or the exchange protein directly activated by cyclic AMP (Epac-1) are implicated in the mechanism through which milk peptides can affect immune function in the early postweaning period. Despite the fact that the research in this field is in its infancy, the evidence available suggests that milk protein peptides may promote development of neonatal immune competence.

Milk contains a variety of components that provide immunological protection and facilitate the development of neonatal immune competence. Two main categories of milk compounds are thought to be associated with immunological activity. The first category includes cytokines, which neonates do not produce efficiently. Cytokines present in milk are thought to be protected against intestinal proteolysis and could alleviate immunological deficits, aiding immune system maturation (Kelleher&Lonnerdal, 2001; Bryan et al., 2006). The second category of milk compounds includes milk protein peptides. Milk peptides may affect mucosal immunity possibly by guiding local immunity until it develops its full functionality (Baldi et al., 2005). This chapter focuses on the effects of milk peptides on immune function and attempts to provide an overview of the knowledge available in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronoff, D. M., Canetti, C., & Peters-Golden, M. (2004). Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. Journal of Immunology, 173, 559–563.

    CAS  Google Scholar 

  • Bailey, M., Clarke, C. J., Wilson, A. D., Williams, N. A., & Stokes, C. R. (1992). Depressed potential for interleukin-2 production following early weaning of piglets. Veterinary Immunology and Immunopathology, 34, 197–207.

    Article  CAS  Google Scholar 

  • Bailey, M., Haverson, K., Inman, C., Harris, C., Jones, P., Corfield, G., Miller, B., & Stokes, C. (2005). The development of the mucosal immune system pre- and post-weaning: Balancing regulatory and effector function. Proceedings of Nutritional Society, 64, 451–457.

    Article  CAS  Google Scholar 

  • Baldi, A., Ioannis, P., Chiara, P., Eleonora, F., Roubini, C., & Vittorio, D. (2005). Biological effects of milk proteins and their peptides with emphasis on those related to the gastrointestinal ecosystem. Journal of Dairy Research, 72, 66–72.

    Article  CAS  Google Scholar 

  • Bryan, D. L., Forsyth, K. D., Gibson, R. A., & Hawkes, J. S. (2006). Interleukin-2 in human milk: A potential modulator of lymphocyte development in the breastfed infant. Cytokine, 33, 289–293.

    Article  CAS  Google Scholar 

  • Chronopoulou, R., Xylouri, E., Fegeros, K., & Politis, I. (2006). The effect of two bovine β-casein peptides on various functional properties of porcine macrophages and neutrophils: Differential roles of protein kinase A and exchange protein directly activated by cyclic AMP-1. British Journal of Nutrition, 96, 553–561.

    CAS  Google Scholar 

  • Clare, D. A., & Swaisgood, H. E. (2000). Bioactive milk peptides: A prospectus. Journal of Dairy Science, 83, 1187–1195.

    CAS  Google Scholar 

  • de Moreno de LeBlanc, A., Matar, C., Theriault, C., & Perdigon, G. (2005). Effects of milk fermented by Lactobacillus helveticus R389 on immune cells associated to mammary glands in normal and a breast cancer model. Immunobiology, 210, 349–358.

    Article  CAS  Google Scholar 

  • de Moreno de LeBlanc, A., Matar, C., Farnworth, E., & Perdigon, G. (2006). Study of cytokines involved in the prevention of a murine experimental breast cancer by kefir. Cytokine, 34, 1–8.

    Article  CAS  Google Scholar 

  • Dent, G., Giembycz, M. A., Rabe, K. F., Wolf, B., Barnes, P. J., & Magnussen, H. (1994). Theophylline suppresses human alveolar macrophage respiratory burst through phosphodiesterase inhibition. American Journal of Respiratory Cell and Molecular Biology, 10, 565–572.

    CAS  Google Scholar 

  • Fragou, S., Fegeros, K., Xylouri, E., Baldi, A., & Politis, I. (2004). Effect of vitamin E supplementation on various functional properties of macrophages and neutrophils obtained from weaned piglets. Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine, 51, 1–6.

    Google Scholar 

  • Gill, H. S., Doull, F., Rutherfurd, K. J., & Cross, M. L. (2000). Immunoregulatory peptides in bovine milk. British Journal of Nutrition, 84, S111–S117.

    CAS  Google Scholar 

  • Kapsokefalou, M., Alexandropoulou, I., Komaitis, M., & Politis, I. (2005). In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers. International Journal of Food Sciences and Nutrition, 56, 293–302.

    Article  CAS  Google Scholar 

  • Kelleher, S. L., & Lonnerdal, B. (2001). Immunological activities associated with milk. Advances in Nutritional Research, 10, 39–65.

    CAS  Google Scholar 

  • LeBlanc, J. G., Matar, C., Valdez, J. C., LeBlanc, J., & Perdigon, G. (2002). Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science, 85, 2733–2742.

    Article  CAS  Google Scholar 

  • Matar, C., Valdez, J. C., Medina, M., Rachid, M., & Perdigon, G. (2001). Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. Journal of Dairy Research, 68, 601–609.

    Article  CAS  Google Scholar 

  • Olivares, M., Diaz-Ropero, M. P., Gomez, N., Lara-Villoslada, F., Sierra, S., Maldonado, J. A., Martin, R., Rodriguez, J. M., & Xaus, J. (2006). The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. International Microbiology, 9, 47–52.

    CAS  Google Scholar 

  • Pecquet, S., Bovetto, L., Maynard, F., & Fritsche, R. (2001). Peptides obtained by tryptic hydrolysis of bovine β-lactoglobulin induce specific oral tolerance in mice. Journal of Allergy and Clinical Immunology, 105, 514–521.

    Article  Google Scholar 

  • Pessi, T., Isolauri, E., Sutas, Y., Kankaanranta, H., Moilanen, E., & Hurme, M. (2001). Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein. International Immunopharmacology, 1, 211–218.

    Article  CAS  Google Scholar 

  • Prioult, G., Pecquet, S., & Fliss, I. (2004). Stimulation of interleukin-10 production by acidic β-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clinical and Diagnostic Laboratory Immunology, 11, 266–271.

    Article  CAS  Google Scholar 

  • Rachid, M., Matar, C., Duarte, J., & Perdigon, G. (2006). Effect of milk fermented with a Lactobacillus helveticus R389(+) proteolytic strain on the immune system and on the growth of 4T1 breast cancer cells in mice. FEMS Immunology and Medical Microbiology, 47, 242–253.

    Article  CAS  Google Scholar 

  • Rowe, J., Finlay-Jones, J. J., Nicholas, T. E., Bowden, J., Morton, S., & Hart, P. H. (1997). Inability of histamine to regulate TNF-α production by human alveolar macrophages. American Journal of Respiratory Cell and Molecular Biology, 17, 218–223.

    CAS  Google Scholar 

  • Vinderola, C. G., Duarte, J., Thangavel, D., Perdigon, G., Farnworth, E., & Matar, C. (2005). Immunomodulating capacity of kefir. Journal of Dairy Research, 72, 195–202.

    Article  CAS  Google Scholar 

  • Vinderola, C. G., Perdigon, G., Duarte, J., Farnworth, E., & Matar, C. (2006). Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation. Journal of Dairy Research, 73, 472–479.

    Article  CAS  Google Scholar 

  • Wattrang, E., Wallgren, P., Lindberg, A., & Fossum, C. (1998). Signs of infections and reduced immune functions at weaning of conventionally reared and specific pathogen free pigs. Zentralblatt für Veterinärmedizin. Reihe B, 45, 7–17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Politis, I., Chronopoulou, R. (2008). Milk Peptides and Immune Response in the Neonate. In: Bösze, Z. (eds) Bioactive Components of Milk. Advances in Experimental Medicine and Biology, vol 606. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74087-4_10

Download citation

Publish with us

Policies and ethics