Skip to main content

Antioxidants Reduce Consequences of Radiation Exposure

  • Conference paper

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 614))

Abstract

Antioxidants have been studied for their capacity to reduce the cytotoxic effects of radiation in normal tissues for at least 50 years. Early research identified sulfur-containing antioxidants as those with the most beneficial therapeutic ratio, even though these compounds have substantial toxicity when given in-vivo. Other antioxidant molecules (small molecules and enzymatic) have been studied for their capacity to prevent radiation toxicity both with regard to reduction of radiation-related cytotoxicity and for reduction of indirect radiation effects including long-term oxidative damage. Finally, categories of radiation protectors that are not primarily antioxidants, including those that act through acceleration of cell proliferation (e.g. growth factors), prevention of apoptosis, other cellular signaling effects (e.g. cytokine signal modifiers), or augmentation of DNA repair, all have direct or indirect effects on cellular redox state and levels of endogenous antioxidants. In this review we discuss what is known about the radioprotective properties of antioxidants, and what those properties tell us about the DNA and other cellular targets of radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Freyer, K. Jarrett, S. Carpenter, et al., Oxygen enhancement ratio as a function of dose and cell cycle phase for radiation-resistant and sensitive CHO cells, Radiat. Res. 127:297–307 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. D. J. Grdina, J. S. Murley, and Y. Kataoka, Radioprotectants: Current status and new directions, Oncology 63(suppl. 2):2–10 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. K. D. Held, Models for thiol protection of DNA in cells, Pharmac. Ther. 39:123–131 (1988).

    Article  CAS  Google Scholar 

  4. G. D. Smoluk, R. C. Fahey, and J. F. Ward, Interaction of glutathione and other low-molecular weight thiols with DNA: evidence for counterion condensation and coion depletion near DNA, Radiat. Res. 114:3–10 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. S. Zheng, G. L. Newton, J. F. Ward, et al., Aerobic radioprotection of pBR322 by thiols: effect of thiol net charge upon scavenging of hydroxyl radicals and repair of DNA radicals, Radiat. Res. 130:183–193 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. D. Murray, A. Prager, S. C. Vanankeren, et al., Comparative effect of the thiols dithiothreitol, cysteamine and WR-151326 on survival and on the induction of DNA damage in cultured Chinese hamster ovary cells exposed to γ-radiation, Int. J. Radiat. Biol. 58:71–91 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. S. S. Kumar, T. P. A. Devasagayam, B. Jayshree, et al., Mechanism of protection against radiation-induced DNA damage in plasmid pBR322 by caffeine, Int. J. Radiat. Biol. 77:617–623 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. R. J. Reiter, D. Tan, J. C. Mayo, et al., Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans, Acta. Biochem. Pol. 50:1129–1146 (2003).

    CAS  Google Scholar 

  9. D. K. Maurya, V. P. Salvi, and C. K. K. Nair, Radioprotection of normal tissues in tumor-bearing mice by troxerutin, J. Radiat. Res. 45:221–228 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. P. Uma Devi, K. S. Bisht, and M. Vinitha, A comparative study of radioprotection by Ocimum flavonoids and synthetic animothiol protectors in the mouse, Brit. J. Radiol. 71:782–784 (1998).

    Google Scholar 

  11. J. F. Weiss, and M. R. Landauer, Protection against ionizing radiation by antioxidant nutrients and phytochemicals, Toxicology 189:1–20 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. B. Frei, and J. V. Higdon, Antioxidant activity of tea polyphenols in vivo: evidence from animal studies, J. Nutr. 133:3275S–3284S (2003).

    PubMed  CAS  Google Scholar 

  13. J. M. Yuhas, M. E. Davis, D. Glover, et al., Circumvention of the tumor membrane barrier to WR-2721 absorption by reduction of the drug hydrophilicity, Int. J. Radiat. Oncol. 8:519–522 (1982).

    CAS  Google Scholar 

  14. D. Q. Brown, J. M. Yuhas, L. J. MacKensie, et al., Differential radioprotection of normal tissues by hydrophilic chemical protectors, Int. J. Radiat. Biol. 10:1581–1584 (1984).

    CAS  Google Scholar 

  15. G. L. Newton, J. A. Aguilera, T. Kim, et al., Transport of aminothiol radioprotectors into mammalian cells: passive diffusion versus mediated uptake. Radiat. Res. 146:206–215 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. V. Santini, and F. J. Giles, The potential of amifostine: from cytoprotectant to therapeutic agent, Haematologica 84:1035–1042 (1999).

    PubMed  CAS  Google Scholar 

  17. J. M. Yuhas, S. M. J. Afzal, and V. Afzal, Variation in normal tissue responsiveness to WR-2721, Int. J. Radiat. Oncol. 10:1537–1539 (1984).

    Article  CAS  Google Scholar 

  18. H. I. Quiňones, A. F. List, and E. W. Gerner, Selective exclusion by the polyamine transporter as a mechanism for differential radioprotection of amifostine derivatives, Clin. Cancer Res. 8:1295–1300 (2002).

    PubMed  Google Scholar 

  19. P. M. Calabro-Jones, J. A. Aguilera, J. F. Ward, et al., The limits to radioprotection of Chinese hamster V79 cells by WR-1065 under aerobic conditions, Radiat. Res. 149:550–559 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. C. R. Cully, and C. M. Spencer, An update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplasia syndrome, Drugs 61:641–684 (2001).

    Article  Google Scholar 

  21. J. S. Murley, Y. Kataoka, D. Cao, et al., Delayed radioprotection by NFκ;B-mediated induction of SOD2 (MnSOD) in SA-NH tumor cells after exposure to clinically used thiol-containing drugs, Radiat. Res. 162:536–546 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. J. S. Murley, Y. Kataoka, C. J. Weydert, et al., Delayed radioprotection by nuclear transcription factor κB-mediated induction of manganese superoxide dismutase in human microvascular endothelial cells after exposure to the free radical scavenger, WR1065, Free Rad. Biol. Med. 40:1004–1016 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. D. C. Wallace, The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement, Gene 354:169–180 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. L. J. Marnett, Oxy radicals, lipid peroxidation and DNA damage, Toxicology 181:219–222 (2002).

    Article  PubMed  Google Scholar 

  25. N. M. Gandhi, and C. K. K. Nair, Radiation protection by diethyldithiocarbamate: protection of membrane and DNA in vitro and in vivo against γ-irradiation, J. Radiat. Res. 45:175–180 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. N. M. Gandhi, U. V. Gopalaswamy, and C. K. K. Nair, Radiation protection by disulfiram: protection of membrane and DNA in vitro and in vivo against γ-radiation, J. Radiat. Res. 44:255–259 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. K. Shimoi, S. Masuda, B. Shen, et al., Radioprotective effects of antioxidative plant flavonoids in mice, Mutation Res. 350:153–161 (1996).

    PubMed  Google Scholar 

  28. N. Cherdyntseva, A. Shishkina, I. Butorin, et al., Effect of tocopherol-monoglucoside (TMG), a water-soluble glycosylated derivate of vitamin E, on hematopoietic recovery in irradiated mice, J. Radiat. Res. 46:37–41 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. J. R. Woods, M. A. Plessinger, and R. K. Miller, Vitamins C and E: missing links in preventing preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 185:5–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. K. N. Prasad, Rationale for using high-dose multiple dietary antioxidants as an adjunct to radiation therapy and chemotherapy, J. Nutr. 134:3182S–3183S (2004).

    PubMed  CAS  Google Scholar 

  31. K. N. Prasad, Rationale for using multiple antioxidants in protecting humans against low doses of ionizing radiation, Br. J. Radiol. 78:485–492 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. L. Malakhova, V. G. Bezlepkin, V. Antipova, et al., The increase in mitochondrial DNA copy number in the tissues of γ-irradiated mice, Cell. Mol. Biol. Lett. 10:721–732 (2005).

    PubMed  CAS  Google Scholar 

  33. S. P. LeDoux, G. L. Wilson, E. J. Beecham, T. Stevnsner, K. Wassermann, and V. A. Bohr, Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells, Carcinogenesis 13:1967–1973 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. G. L. Dianov, N. Souza-Pinto, S. G. Nyaga, T. Thybo, T. Stevnsner, V. A. Bohr, Base excision repair in nuclear and mitochondrial DNA, Prog. Nuc. Acid Res. Mol. Biol. 68:285–297 (2001).

    Article  CAS  Google Scholar 

  35. A. May, and V. A. Bohr, Gene-specific repair of γ-ray-induced DNA strand breaks in colon cancer cells: no coupling to transcription and no removal from the mitochondrial genome, Biochem. Biophys. Res. Commun. 269:433–437 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. H. Budworth, and G. L. Dianov, Mode of inhibition of short-patch base excision repair by thymine glycol within clustered DNA lesions, J. Biol. Chem. 278:9378–9381 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. H. Budworth, G. Matthewman, P. O’Neill, and G. L. Dianov, Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks,J. Mol. Biol. 351:1020–1029 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. N. Yang, M. A. Chaudhry, and S. S. Wallace, Base excision repair by hNTH1 and hOGG1: a two edge sword in the processing of DNA damage in γ-irradiated human cells, DNA Repair 5:43–51 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. L. Tretter, É. Rónai, G. Szabados, et al., The effect of the radioprotector WR-2721 and WR-1065 on mitochondrial lipid peroxidation, Int. J. Radiat. Biol. 57:467–478 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. M. W. Epperly, C. A. Sikora, S. J. DeFilippi, et al., Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane, Radiat. Res. 157:568–577 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. R. I. Salganik, The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population, J. Am. Coll. Nutr. 20:464S–472S (2001).

    PubMed  CAS  Google Scholar 

  42. D. E. McClain, J. F. Kalinich, and N. Ramakrishnan, Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes, FASEB 9:1345–1354 (1995).

    CAS  Google Scholar 

  43. G. Hernández-Flores, P. C. Gómez-Contreras, J. R. Domínguez-Rodríguez, et al., γ-irradiation induced apoptosis in peritoneal macrophages by oxidative stress. Implications of antioxidants in caspase mitochondrial pathway, Anticancer Res. 25:4091–4100 (2005).

    PubMed  Google Scholar 

  44. H. Kondo, S-H. Park, K. Watanabe, et al., Polyphenol (-)-epigallocatechin gallate inhibits apoptosis induced by irradiation in human HaCaT keratinocytes, Biochem. Biophys. Res. Commun. 316:59–64 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. N. N. Khodarev, Y. Kataoka, J. S. Murley, et al., Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC), Int. J. Radiat. Oncol. Biol. Phys. 60:553–563 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. H. B. Stone, C. N. Coleman, M. S. Anscher, et al., Effects of radiation on normal tissue: consequences and mechanisms, Lancet Oncol. 4:529–36 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. M. E. C. Robbins, and W. Zhao, Chronic oxidative stress and radiation-induced late normal tissue injury: a review, Int. J. Radiat. Biol. 80:251–59 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. C. Borek, and W. Troll, Modifiers of free radicals inhibit in vitro the oncogenic actions of x-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, Proc. Natl. Acad. Sci. 80:1304–307 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. M. S. Anscher, L. Chen, Z. Rabbani, et al., Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 62:255–259 (2005).

    Article  PubMed  Google Scholar 

  50. M. Mitjans, V. Martínez, J. del Campo, et al., Novel epicatechin derivatives with antioxidant activity modulate interleukin-1β release in lipopolysaccharide-stimulated human blood, Bioorg. Med. Chem. Lett. 14:5031–5034 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. J-P. Marier, K. Chen, P. Prince, G. Scott, J. R. E. del Castillo, and P. Vachon, Production of ex vivo lipopolysaccharide-induced tumor necrosis factor-α, interleukin-1β, and interleukin-6 is suppressed by trans-resveratrol in a concentration-dependent manner, Can. J. Vet. Res. 69:151–154 (2005).

    PubMed  CAS  Google Scholar 

  52. R. Aneja, K. Odoms, A. G. Denenberg, and H. R. Wong, Theaflavin, a black tea extract, is a novel anti-inflammatory compound, Crit. Care Med. 32:2097–2103 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. J. J. Haddad, and C. S. Fahlman, Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem. Biophys. Res. Commun. 297:163–176 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. M. W. Epperly, J. Bray, S. Kraeger, et al., Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy, Gene Ther. 5:196–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  55. Z. Vujaskovic, I. Batinic-Haberle, Z. N. Rabbani, et al., A small molecule weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury, Free Rad. Biol. Med. 33:857–863 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. J-L. Lefaix, S. Delanian, J-J. Leplat, et al., Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study, Int. J. Radiat. Oncol. Biol. Phys. 35:305–312 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. J-L. Lefaix, S. Delanian, M-C. Vozenin, et al., Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and α-tocopherol: an experimental study, Int. J. Radiat. Oncol. Biol. Phys. 43:839–847 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. S. Delanian, R. Porcher, S. Balla-Mekias, et al., Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis, J. Clin. Oncol. 21:2545–2550 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. P. Okunieff, E. Augustine, J. E. Hicks, et al., Pentoxifylline in the treatment of radiation-induced fibrosis, J. Clin. Oncol. 22, 2207–2213 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. S. Delanian, M. Martin, A. Bravard, et al., Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage, Radiother. Oncol. 58:325–331 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. J. Eastgate, J. Moreb, H. S. Nick, et al., A role for manganese dismutase in radioprotection of hematopoietic stem cells by interleukin-1, Blood 81:639–646 (1993).

    PubMed  CAS  Google Scholar 

  62. J. Moreb, and J. R. Zucali, The therapeutic potential of interleukin-1 and tumor necrosis factor on hematopoietic stem cells, Leuk. Lymphoma 8:267–275 (1992).

    Article  PubMed  CAS  Google Scholar 

  63. C. Muňoz, M. C. Castellanos, A. Alfranca, et al., Transcriptional up-regulation of intracellular adhesion molecule-1 in human endothelial cells by the antioxidant pyrrolidine dithiocarbamate involves the activation of activating protein-1, J. Immunol. 157:3587–3597 (1996).

    PubMed  Google Scholar 

  64. M. Walther, W. Kaffenberger, and D. van Beuningen, Influence of clinically used antioxidants on radiation-induced expression of intracellular cell adhesion molecule-1 on HUVEC, Int. J. Radiat. Biol. 75:1317–1325 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. K. Otsuka, T. Koana, H. Tauchi, and K. Sakai, Activation of antioxidant enzymes induced by low-dose-rate whole-body γ irradiation: adaptive response in terms of initial DNA damage, Radiat. Res. 166, 474–478 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Okunieff, P. et al. (2008). Antioxidants Reduce Consequences of Radiation Exposure. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_20

Download citation

Publish with us

Policies and ethics