Skip to main content

Wolbachia- Based Technologies for Insect Pest Population Control

  • Chapter
Transgenesis and the Management of Vector-Borne Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 627))

Abstract

Wfolbachia are a group of obligatory intracellular and maternally inherited bacteria found in many arthropod species, including insects, mites, spiders, springtails, crustaceans, as well as in certain nematodes. Several PCR-based surveys suggest that over 20% of the arthropod species may be Wolbachia- infected, rendering this bacterium the most ubiquitous intracellular symbiont yet described. Wolbachia have recently attracted attention for their potential as novel and environmentally friendly bio-control agents. Wolbachia are able to invade and maintain themselves in the arthropod species through manipulation of the host’s reproduction. Several strategies can be distinguished, one of which is cytoplasmic incompatibility (CI). Wolbachia- induced cytoplasmic incompatibility can be used beneficially in the following ways: (a) as a tool for insect pest population control in a way analogous to the “Sterile Insect technique” (SIT) and (b) as a drive system to spread desirable genotypes in field arthropod populations. In addition, virulent Wolbachia strains offer the potential to control vector species by modifying their population age structure. In the present chapter, I summarize the recent developments in Wolbachia research with an emphasis on the applied biology of Wolbachia and conclude with the challenges that Wolbachia researchers will face if they want to use and/or introduce Wolbachia into pest and vector species of economic, environmental and public health relevance and, through Wolbachia- based technologies, to suppress or modify natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Neill SL, Giordano R, Colbert AME et al. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 1992; 89:2699–2702.

    Article  PubMed  CAS  Google Scholar 

  2. Hertig M. The rickettsia, Wolbachia pipientis and associated inclusions of the mosquito, Culex pipiens. Parasitology 1936; 28:453–490.

    Article  Google Scholar 

  3. Werren JH, Zhang W, Guo LR. Evolution and phylogeny of Wolbachia-reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 1995; 261:55–63.

    Article  CAS  Google Scholar 

  4. Breeuwer JAJ, Jacobs G. Wolbachia: Intracellular manipulators of mite reproduction. Exp Appl Acarol 1996; 20:421–434.

    Article  PubMed  CAS  Google Scholar 

  5. Werren JH. Biology of Wolbachia. Annu Rev Entomol 1997; 42:587–609.

    Article  PubMed  CAS  Google Scholar 

  6. Werren JH, O’Neill SL. The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential passengers: Inherited microorganisms and arthropod reproduction. Oxford: Oxford University Press, 1997:1–41.

    Google Scholar 

  7. Bandi C, Anderson TJC, Genchi C et al. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 1998; 265:2407–2413.

    Article  CAS  Google Scholar 

  8. Stouthamer R, Breeuwer JAJ, Hurst GDD. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999; 53:71–102.

    Article  PubMed  CAS  Google Scholar 

  9. Bourtzis K, Braig HR. The many faces of Wolbachia. In: Raoult D, Brouqui P, eds. Rickettsiae and Rickettsial Diseases at the Turn of the Third Millennium. Paris: Elsevier, 1999:199–219.

    Google Scholar 

  10. Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 2000; 9:393–405.

    Article  PubMed  CAS  Google Scholar 

  11. In: Bo5urtzis K, Miller T, eds. Insect Symbiosis. Florida: CRC Press, 2003:1–347.

    Google Scholar 

  12. Breeuwer JAJ, Stouthamer R, Barns SM et al. Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol 1992; 1:25–36.

    Article  PubMed  CAS  Google Scholar 

  13. Rousset F, Bouchon D, Pintureau B et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B Biol Sci 1992; 250:91–98.

    Article  CAS  Google Scholar 

  14. Lo N, Casiraghi M, Salati E et al. How many Wolbachia supergroups exist? Mol Biol Evol 2002; 19:341–346.

    PubMed  CAS  Google Scholar 

  15. Rowley SM, Raven RJ, McGraw EA. Wolbachia pipientis in Australian spiders. Curr Microbiol 2004; 49:208–214.

    Article  PubMed  CAS  Google Scholar 

  16. Bordenstein S, Rosengaus RB. Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 2005; 51:393–398.

    Article  PubMed  CAS  Google Scholar 

  17. Werren JH, Winsdor DM. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 2000; 267:1277–1285.

    Article  CAS  Google Scholar 

  18. Casiraghi M, Bordenstein SR, Baldo L et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005; 151:4015–4022.

    Article  PubMed  CAS  Google Scholar 

  19. Parask-evopoulos C, Bordenstein SR, Wernegreen J et al. Towards a Wolbachia multilocus sequence typing system: Discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 2006, 388–395.

    Google Scholar 

  20. Baldo L, Dunning Hotopp JC, Jolley KA et al. A multilocus sequence typing system for the endosymbiont Wolbachia. Appl Environ Microbiol 2006, (in press).

    Google Scholar 

  21. Ghelelovitch S. Sur le diterminisme ginitique de la stiriliti dans les croisements entre diffirentes souches de Culex autogenicus Roubaud. C R Acad Sci III Vie 1952; 234:2386–2388.

    CAS  Google Scholar 

  22. Laven H. Speciation and evolution in Culex pipiens. In: Wright J, Pal R, eds. Genetics of insect vectors of disease. Amsterdam: Elsevier, 1967:251–275.

    Google Scholar 

  23. Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971; 232:657–658.

    Article  PubMed  CAS  Google Scholar 

  24. Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 1973; 22:242–250.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman AA, Turelli M. Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, 1997:42–80.

    Google Scholar 

  26. Bourtzis K, Braig HR, Karr TL. Cytoplasmic Incompatibility. In: Bourtzis K, Miller T, eds. Insect Symbiosis. Florida: CRC Press, 2003:217–246.

    Google Scholar 

  27. Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 1991; 353:440–442.

    Article  PubMed  CAS  Google Scholar 

  28. Breeuwer JA, Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 1990; 346:558–560.

    Article  PubMed  CAS  Google Scholar 

  29. O’Neill SL, Karr TL. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 1990; 348:178–180.

    Article  PubMed  CAS  Google Scholar 

  30. Reed KM, Werren JH. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events. Mol Reprod Dev 1995; 40:408–418.

    Article  PubMed  CAS  Google Scholar 

  31. Callaini GM, Riparbelli G, Giordano R et al. Mitotic defects associated with cytoplasmic incompatibility in Drosophila simulans. J Invert Pathol 1996; 67:55–64.

    Article  Google Scholar 

  32. Callaini G, Dallai R, Riparbelli MG. Wolbachia-induced delay chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 1997; 110:271–280.

    PubMed  CAS  Google Scholar 

  33. Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 2002; 296:1124–1126.

    Article  PubMed  CAS  Google Scholar 

  34. Tram U, Ferree PA, Sullivan W. Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect 2003; 11:999–1011.

    Article  CAS  Google Scholar 

  35. Poinsot D, Charlat S, Mercot H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. Bioessays 2003; 25:259–265.

    Article  PubMed  Google Scholar 

  36. Masui S, Kamoda S, Sasaki T et al. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 2000; 51:491–497.

    PubMed  CAS  Google Scholar 

  37. Masui S, Kuroiwa H, Sasaki T et al. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 2001; 283:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  38. Fujii Y, Kubo T, Ishikawa H et al. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 2004; 317:1183–1188.

    Article  PubMed  CAS  Google Scholar 

  39. Sinkins SP, Walker T, Lynd AR et al. Wolbachia variability and host effects associated with crossing type in Culex mosquitoes. Nature 2005; 436:257–260.

    Article  PubMed  CAS  Google Scholar 

  40. Duron O, Fort P, Weill M. Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc R Soc Lond B Biol Sci 2006; 273:495–502.

    Article  CAS  Google Scholar 

  41. Bordenstein SR, Marshall ML, Fry AJ et al. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathogens 2:e43.

    Google Scholar 

  42. Boyle L, O’Neill SL, Robertson HM et al. Inter-and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 1993; 260:1796–1799.

    Article  PubMed  CAS  Google Scholar 

  43. Poinsot D, Bourtzis K, Markakis G et al. Wolbachia transfer from Drosophila melanogaster to D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics 1998; 150:227–237.

    PubMed  CAS  Google Scholar 

  44. Singh KRP, Curtis CF, Krishnamurthy BS. Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans Wied. Ann Trop Med Parasit 1976; 70:463–466.

    PubMed  CAS  Google Scholar 

  45. Hoffmann AA, Turelli M, Simmons GM. Unidirectional incompatibility between populations of Drosophila simulans. Evolution 1986; 40:692–701.

    Article  Google Scholar 

  46. Hoffmann AA. Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 1988; 48:61–67.

    Article  Google Scholar 

  47. Clancy DJ, Hoffmann AA. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 1998; 86:13–24.

    Article  Google Scholar 

  48. Jamnongluk W, Kittayapong P, Baisley KJ et al. Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 2000; 37:53–57.

    Article  PubMed  CAS  Google Scholar 

  49. Reynolds KT, Hoffmann AA. Male age and the weak expression or nonexpression of cytoplasmic incompatibility in Drosophila strains infected by maternally-transmitted Wolbachia. Genet Res 2002; 80:79–87.

    Article  PubMed  Google Scholar 

  50. Kittayapong P, Mongkalangoon P, Baimai V et al. Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity 2002; 88:270–274.

    Article  PubMed  CAS  Google Scholar 

  51. Reynolds KT, Thomson LJ, Hoffmann AA. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 2003; 164:1027–1034.

    PubMed  Google Scholar 

  52. Karr TL, Yang W, Feder ME. Overcoming cytoplasmic incompatibility in Drosophila. Proc R Soc Lond B Biol Sci 1998; 265:391–395.

    Article  CAS  Google Scholar 

  53. Champion de Crespigny FE, Wedell N. Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc Lond B Biol Sci 2006; 273:1455–1458.

    Article  Google Scholar 

  54. Stevens L. Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invert Pathol 1989; 53:78–84.

    Article  CAS  Google Scholar 

  55. Sinkins SP, Braig HR, O’Neill SL. Wolbachia pipientis: Bacterial density and unidirectional incompatibility between infected populations of Aedes albopictus. Exp Parasitol 1995; 81:284–291.

    Article  PubMed  CAS  Google Scholar 

  56. Beard CB, O’Neill SL, Tesh RB et al. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 1993; 9:179–183.

    Article  PubMed  CAS  Google Scholar 

  57. Bourtzis K, O’Neill SL. Wolbachia infections and their influence on arthropod reproduction. Bioscience 1998; 48:287–293.

    Article  Google Scholar 

  58. Sinkins SP, Curtis CF, O’Neill SL. The potential application of inherited symbiont systems to pest control. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, 1997:155–175.

    Google Scholar 

  59. Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. Insect Mol Biol 1998; 7:201–213.

    Article  PubMed  CAS  Google Scholar 

  60. Sinkins SP, O’Neill SL. Wolbachia as a vehicle to modify insect populations. In: Handler A, James A, eds. Insect Transgenesis. Boca Raton: CRC Press, 2000:271–287.

    Google Scholar 

  61. Aksoy S, Maudlin I, Dale C et al. Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends Parasitol 2001; 17:29–35.

    Article  PubMed  CAS  Google Scholar 

  62. Braig HR, Guzman H, Tesh RB et al. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 1994; 367:453–455.

    Article  PubMed  CAS  Google Scholar 

  63. Giordano R, O’Neill SL, Robertson HM. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechelllia and D. mauritiana. Genetics 1995; 140:1307–1317.

    PubMed  CAS  Google Scholar 

  64. Clancy DJ, Hoffmann AA. Behavior of Wolbachia endosymbionts from Drosophila simulans in Drosophila serrata, a novel host. Am Nat 1997; 149:975–988.

    Article  PubMed  CAS  Google Scholar 

  65. Rousset F, Braig HR, O’Neill SL. A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity 1999; 82:620–627.

    Article  PubMed  Google Scholar 

  66. Sasaki T, Ishikawa, H. Transfection of Wolbachia in the Meditteranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity 2000; 85:130–135.

    Article  PubMed  Google Scholar 

  67. Charlat S, Nirgianaki A, Bourtzis K et al. Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution 2002; 56:1735–1742.

    PubMed  Google Scholar 

  68. McGraw EA, Merritt DJ, Droller JN et al. Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 2002; 99:2918–2923.

    Article  PubMed  CAS  Google Scholar 

  69. Riegler M, Charlat S, Stauffer C et al. Wolbachia transfer from Rhagpletis cerasi to Drosophila simulans: Investigating the outcomes of host-symbiont coevolution. Appl Environ Microbiol 2004; 70:273–279.

    Article  PubMed  CAS  Google Scholar 

  70. Zabalou S, Charlat S, Nirgianaki A et al. Natural Wolbachia infections in the Drosophila yakuba species complex do not induce cytoplasmic incompatibility but fully rescue the wRi modification. Genetics 2004a; 167:827–834.

    Article  PubMed  Google Scholar 

  71. Zabalou S, Riegler M, Theodorakopoulou M et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 2004b; 101:15042–15045.

    Article  PubMed  CAS  Google Scholar 

  72. Xi Z, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005; 310:326–328.

    Article  PubMed  CAS  Google Scholar 

  73. Boiler EF, Russ K, Vallo V et al. Incompatible races of European cherry fruit fly Rhagoletis cerasi (Diptera: Tephritidae) their origin and potential use in biological control. Entomol Exp Appl 1976; 20:237–247.

    Article  Google Scholar 

  74. Brower JH. Suppression of laboratory populations of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) by release of males with cytoplasmic incompatibility. J Stored Prod Res 1979; 15:1–4.

    Article  Google Scholar 

  75. Brower JH. Reduction of almond moth populations in simulated storages by the release of genetically incompatible males. J Econ Entomol 1980; 73:415–418.

    Google Scholar 

  76. Boiler EF. Cytoplasmic incompatibility in Rhagoletis cerasi. In: Robinson AS, Hooper G, eds. Fruit Flies, Their Biology, Natural Enemies and Control. World Crop Pests 3B. Amsterdam: Elsevier, 1989:69–74.

    Google Scholar 

  77. Bourtzis K, Robinson AS. Insect pest control using Wolbachia and/or radiation. In: Bourtzis K, Miller T, eds. Insect Symbiosis 2. Florida: Taylor and Francis Group, LLC, 2006, (in press).

    Google Scholar 

  78. Boiler EF, Bush GL. Evidence for genetic variation in populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on physiological parameters and hybridization experiments. Entomol Exp Appl 1974; 17:279–293.

    Article  Google Scholar 

  79. In: Robinson AS, Hooper G, eds. Fruit Flies, Their Biology, Natural Enemies and Control. World Crop Pests 3B. Amsterdam: Elsevier, 1989.

    Google Scholar 

  80. Bourtzis K, Nirgianaki A, Onyango P et al. A prokaryotic dnaA sequence in Drosophila melanogaster: Wolbachia infection and cytoplasmic incompatibility among laboratory strains. Insect Mol Biol 1994; 3:131–142.

    Article  PubMed  CAS  Google Scholar 

  81. Rocha LS, Mascarenias RO, Perondini ALP et al. Occurrence of Wolbachia in Brazilian samples of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Neotropical Entomol 2005; 34:1013–1015.

    CAS  Google Scholar 

  82. Robinson AS, Franz G, Fisher K. Genetic sexing strains in the medfly, Ceratitis capitata: Development, mass rearing and field application. Trends Entomol 1999; 2:81–104.

    Google Scholar 

  83. Franz GF. Genetic sexing strains in Mediterannean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer, 2005:427–451.

    Google Scholar 

  84. Arunachalam N, Curtis CF. Integration of radiation with cytoplasmic incompatibility for genetic control in the Culex pipiens complex (Diptera: Culicidae). J Med Entomol 1985; 22:648–653.

    PubMed  CAS  Google Scholar 

  85. Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genetics 2006; 7:427–435.

    Article  CAS  Google Scholar 

  86. Ribeiro JM, Kidwell MG. Transposable elements as population drive mechanisms: Specification of critical parameter values. J Med Entomol 1994; 31:10–16.

    PubMed  CAS  Google Scholar 

  87. Braig HR, Yan G. The spread of genetic constructs in natural insect populations. In: Letourneau DK, Burrows BE, eds. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. Boca Raton: CRC Press, 2001:251–314.

    Google Scholar 

  88. Lyttle TW. Cheaters sometimes prosper: Distortion of mendelian segregation by meiotic drive. Trends Genet 1993; 9:205–210.

    Article  PubMed  CAS  Google Scholar 

  89. Taylor DR, Ingvarsson PK. Common features of segregation distortion in plants and animals. Genetics 2003; 117:27–35.

    Article  CAS  Google Scholar 

  90. Turelli M, Hoffman AA. Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations. Genetics 1995; 140:1319–1338.

    PubMed  CAS  Google Scholar 

  91. Hoshizaki S, Shimada T. PCR-based detection of Wolbachia, cytoplasmic incompatibility microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: Has the distribution of Wolbachia spread recently? Insect Mol Biol 1995; 4:237–243.

    Article  PubMed  CAS  Google Scholar 

  92. Sinkins SP. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 2004; 34:723–729.

    Article  PubMed  CAS  Google Scholar 

  93. Sinkins SP, Godfray HCJ. Use of Wolbachia to drive nuclear transgenes through insect populations. Proc R Soc Lond B Biol Sci 2004; 271:1421–1426.

    Article  CAS  Google Scholar 

  94. Dobson SL, Bourtzis K, Braig HR et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 1997; 29:153–160.

    Article  Google Scholar 

  95. Cheng Q, Ruel TD, Zhou W et al. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 2000; 14:44–50.

    Article  CAS  Google Scholar 

  96. Min KT, Benzer S. Wolbachia, normally symbiont of Drosophila, can be virulent, causing degeneration and death. Proc Natl Acad Sci USA 1997; 94:10792–10796.

    Article  PubMed  CAS  Google Scholar 

  97. Stouthamer R. The use of sexual versus asexual wasps in biological control. Entomophaga 1993; 38:3–6.

    Article  Google Scholar 

  98. Cheng Q, Aksoy S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 1999; 8:125–132.

    Article  PubMed  CAS  Google Scholar 

  99. Wu M, Sun LV, Vamathevan J et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biology 2004; 2:e69.

    Article  PubMed  Google Scholar 

  100. Foster J, Ganatra M, Kamal I et al. The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biology 2005; 3:el21.

    Article  CAS  Google Scholar 

  101. Oehler S, Bourtzis K. First International Wolbachia Conference: Wolbachia 2000. Symbiosis 2000; 29:151–161.

    Google Scholar 

  102. Salzberg SL, Dunning Hotopp JC, Delcher AL et al. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 2005a; 6:R23.

    Article  PubMed  Google Scholar 

  103. Salzberg SL, Dunning Hotopp JC, Delcher AL et al. Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 2005b; 6:402.

    Article  PubMed  Google Scholar 

  104. Fenn K, Blaxter M. Wolbachia genomes: Revealing the biology of parasitism and mutualism. Trends Parasitol 2006; 22:60–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Bourtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bourtzis, K. (2008). Wolbachia- Based Technologies for Insect Pest Population Control. In: Aksoy, S. (eds) Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology, vol 627. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78225-6_9

Download citation

Publish with us

Policies and ethics