Skip to main content

Regulation of Programmed Cell Death by the P53 Pathway

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

The p53 pathway is targeted for inactivation in most human cancers either directly or indirectly, highlighting its critical function as a tumor suppressor gene. p53 is normally activated by cellular stress and mediates a growth-suppressive response that involves cell cycle arrest and apoptosis. In the case of cell cycle arrest, p21 appears sufficient to block cell cycle progression out of G1 until repair has occurred or the cellular stress has been resolved. The p53-dependent apoptotic response is more complex and involves transcriptional activation of multiple proapoptotic target genes, tissue, and signal specificity, as well as additional events that are less well understood. In this chapter, we summarize the apoptosis pathway regulated by p53 and include some open questions in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, H. (2004). Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer 4, 978–987.

    CAS  PubMed  Google Scholar 

  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, Jacks T. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 2000 14:704–18.

    CAS  PubMed  Google Scholar 

  • Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R., and Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293.

    CAS  PubMed  Google Scholar 

  • Bode, A. M. and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793–805.

    CAS  PubMed  Google Scholar 

  • Bredesen, D. E., Mehlen, P., and Rabizadeh, S. (2004). Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev 84, 411–430.

    CAS  PubMed  Google Scholar 

  • Burns, T. F., Bernhard, E. J., and El-Deiry, W. S. (2001). specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 20, 4601–4612.

    CAS  PubMed  Google Scholar 

  • Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T., and El-Deiry, W. S. (2003). Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 23, 5556–5571.

    CAS  PubMed  Google Scholar 

  • Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G., and Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8, 282–288.

    CAS  PubMed  Google Scholar 

  • Bykov, V. J., Zache, N., Stridh, H., Westman, J., Bergman, J., Selivanova, G., and Wiman, K. G. (2005). PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24, 3484–3491.

    CAS  PubMed  Google Scholar 

  • Cartron, P. F., Gallenne, T., Bougras, G., Gautier, F., Manero, F., Vusio, P., Meflah, K., Vallette, F. M., and Juin, P. (2004). The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16, 807–818.

    CAS  PubMed  Google Scholar 

  • Chan, H., Bartos, D. P., and Owen-Schaub, L. B. (1999). Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50–p65 recruitment. Mol Cell Biol 19, 2098–2108.

    CAS  PubMed  Google Scholar 

  • Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., and Green, D. R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735.

    CAS  PubMed  Google Scholar 

  • Danial, N. N. and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205–219.

    CAS  PubMed  Google Scholar 

  • Dechant, M. J., Fellenberg, J., Scheuerpflug, C. G., Ewerbeck, V., and Debatin, K. M. (2004). Mutation analysis of the apoptotic “death-receptors” and the adaptors TRADD and FADD/MORT-1 in osteosarcoma tumor samples and osteosarcoma cell lines. Int J Cancer 109, 661–667.

    CAS  PubMed  Google Scholar 

  • Degli-Esposti, M. A., Smolak, P. J., Walczak, H., Waugh, J., Huang, C. P., DuBose, R. F., Goodwin, R. G., and Smith, C. A. (1997a). Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186, 1165–1170.

    CAS  PubMed  Google Scholar 

  • Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997b). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7, 813–820.

    CAS  PubMed  Google Scholar 

  • El-Deiry, W. S. (2003). The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22, 7486–7495.

    CAS  PubMed  Google Scholar 

  • Essmann, F., Pohlmann, S., Gillissen, B., Daniel, P, T., Schulze,-Osthoff. K., and Janicke, R. U. (2005). Irradiation-induced translocation of p53 to mitochondria in the absence of apoptosis. J Biol Chem 280, 37169–37177.

    CAS  PubMed  Google Scholar 

  • Fei, P., Wang, W., Kim, S. H., Wang, S., Burns, T. F., Sax, J. K., Buzzai, M., Dicker, D. T., McKenna, W. G., Bernhard, E. J., and El-Deiry, W. S. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6, 597–609.

    CAS  PubMed  Google Scholar 

  • Fei, P., Bernhard, E. J., and El-Deiry, W. S. (2005). Tissue-specific induction of p53 targets in vivo. Cancer Res 62, 7316–7327.

    Google Scholar 

  • Finnberg, N., Gruber, J. J., Fei, P., Rudolph, D., Bric, A., Kim, S. H., Burns, T. F., Ajuha, H., Page, R., Wu, G. S., Chen, Y., McKenna, W. G., Bernhard, E., Lowe, S., Mak, T., and El-Deiry, W. S. (2005). DR5 knockout mice are compromised in radiation-induced apoptosis. Mol Cell Biol 25, 2000–2013.

    CAS  PubMed  Google Scholar 

  • Fisher, M. J., Virmani, A. K., Wu, L., Aplenc, R., Harper, J. C., Powell, S. M., Rebbeck, T. R., Sidransky, D., Gazdar, A. F., and El-Deiry, W. S. (2001). Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin Cancer Res 7, 1688–1697.

    CAS  PubMed  Google Scholar 

  • Foster, B. A., Coffey, H. A., Morin, M. J., and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510.

    CAS  PubMed  Google Scholar 

  • Fuchs, E. J., McKenna, K. A., Bedi, A. (1997). p53-dependent DNA damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32beta. Cancer Res 57, 2550–2554.

    CAS  PubMed  Google Scholar 

  • Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., and Giaccia, A. J. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.

    CAS  PubMed  Google Scholar 

  • Gupta, S., Radha, V., Furukawa, Y., and Swarup, G. (2001). Direct transcriptional activation of human caspase-1 by tumor suppressor p53. J Biol Chem 276, 10585–10588.

    CAS  PubMed  Google Scholar 

  • Han, J., Flemington, C., Houghton, A. B., Gu, Z., Zambetti, G. P, Lutz, R. J., Zhu, L., and Chittenden, T. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98, 11318–11323.

    CAS  PubMed  Google Scholar 

  • Harris, A. L. (2002). Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38–47.

    CAS  PubMed  Google Scholar 

  • Ho, C. K., Bush, J. A., and Li, G. (2003). Tissue-specific regulation of Apaf-1 expression by p53. Oncol Rep 10, 1139–1143.

    CAS  PubMed  Google Scholar 

  • Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J., and Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277, 3247–3257.

    CAS  PubMed  Google Scholar 

  • Ichwan, S. J., Yamada, S., Sumrejkanchanakij, P., Ibrahim-Auerkari, E., Eto, K., and Ikeda, M. A. (2006). Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25, 1216–1224.

    CAS  PubMed  Google Scholar 

  • Hupp, T. R, Sparks, A., and Lane, D. P. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237–245.

    CAS  PubMed  Google Scholar 

  • Ihrie, R. A., Marques, M. R., Nguyen, B. T., Horner, J. S., Papazoglu, C., Bronson, R. T., Mills, A. A., and Attardi, L. D. (2005). Perp is a p63-regulated gene essential for epithelial integrity. Cell 120, 843–856.

    CAS  PubMed  Google Scholar 

  • Ihrie, R. A., Bronson, R. T., and Attardi, L. D. (2006). Adult mice lacking the p53/p63 target gene Perp are not predisposed to spontaneous tumorigenesis but display features of ectodermal dysplasia syndromes. Cell Death Differ 13(9), 1614–1618.

    CAS  PubMed  Google Scholar 

  • Ito, A., Lai, C. H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E., and Yao, T. P. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20, 1331–1340.

    CAS  PubMed  Google Scholar 

  • Jeffers, J. R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K. H., Han, J., Chittenden, T., Ihle, J. N., McKinnon, P. J., Cleveland, J. L., and Zambetti, G. P. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328.

    CAS  PubMed  Google Scholar 

  • Jin, Y., Zeng, S. X., Lee, H., and Lu, H. (2004). MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J Biol Chem 279, 20035–20043.

    CAS  PubMed  Google Scholar 

  • Kamer, I., Sarig, R., Zaltsman, Y., Niv, H., Oberkovitz, G., Regev, L., Haimovich, G., Lerenthal, Y., Marcellus, R. C., and Gross, A. (2005). Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122, 593–603.

    CAS  PubMed  Google Scholar 

  • Kim, K., Fisher, M. J, Xu, S. Q., and El-Deiry, W. S. (2000). Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6, 335–346.

    CAS  PubMed  Google Scholar 

  • Lamhamedi-Cherradi, S. E., Zheng, S. J., Maguschak, K. A., Peschon, J., and Chen, Y. H. (2003). Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat Immunol 4, 255–260.

    CAS  PubMed  Google Scholar 

  • Koumenis, C., Alarcon, R., Hammond, E., Sutphin, P., Hoffman, W., Murphy, M., Derr, J., Taya, Y., Lowe, S. W., Kastan, M., and Giaccia, A. (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21, 1297–1310.

    CAS  PubMed  Google Scholar 

  • LeBlanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J, Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002). Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8, 274–281.

    CAS  PubMed  Google Scholar 

  • Lee, S. H., Shin, M. S., Kim, H. S., Lee, H. K., Park, W. S., Kim, S. Y., Lee, J. H., Han, S. Y., Park, J. Y., Oh, R. R., Kang, C. S., Kim, K. M., Jang, J. J., Nam, S. W., Lee, J. Y., and Yoo, N. J. (2001). Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 20, 399–403.

    CAS  PubMed  Google Scholar 

  • Lehar, S. M., Nacht, M., Jacks, T., Vater, C. A., Chittenden, T., and Guild, B. C. (1996). Identification and cloning of EI24, a gene induced by p53 in etoposide-treated cells. Oncogene 12, 1181–1187.

    CAS  PubMed  Google Scholar 

  • Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192.

    CAS  PubMed  Google Scholar 

  • Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E., and George. D. L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6, 443–450.

    CAS  PubMed  Google Scholar 

  • Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, E., Waymire, K. G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V. M., Adelman, D. M., Simon, M. C., Ma, A., Golden, J. A., Evan, G., Korsmeyer, S. J., MacGregor, G. R., and Thompson, C. B. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389–1399.

    CAS  PubMed  Google Scholar 

  • Liu, Q., El-Deiry, W. S., and Gazitt, Y. (2005). Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines. Exp Hematol 29, 962–970.

    Google Scholar 

  • Liu, X., Yue, P., Khuri, F. R., and Sun, S. Y. (2004). p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64, 5078–5083.

    CAS  PubMed  Google Scholar 

  • Liu, X., Yue, P., Khuri, F. R., and Sun, S. Y. (2005). Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity. Cancer Res 65, 9169–9175.

    CAS  PubMed  Google Scholar 

  • Longley, D. B., Allen, W. L., McDermott, U., Wilson, T. R., Latif, T., Boyer, J., Lynch, M., and Johnston, P. G. (2004). The roles of thymidylate synthase and p53 in regulating Fas-mediated apoptosis in response to antimetabolites. Clin Cancer Res 10, 3562–3571.

    CAS  PubMed  Google Scholar 

  • Lowe, S. W. and Sherr, C. J. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13, 77–83.

    CAS  PubMed  Google Scholar 

  • MacLachlan, T. K. and El-Deiry, W. S. (2002). Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA 99, 9492–9497.

    CAS  PubMed  Google Scholar 

  • Medema, J. P, Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann M, Krammer, P. H, and Peter, M. E. (1997). FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16, 2794–2804.

    CAS  PubMed  Google Scholar 

  • Meng, R. D., McDonald, E. R. III, Sheikh, M. S., Fornace, A. J., Jr., and El-Deiry, W. S. (2000). The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther 1, 130–144.

    CAS  PubMed  Google Scholar 

  • Michael, D. and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13, 49–58.

    CAS  PubMed  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577–590.

    CAS  PubMed  Google Scholar 

  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., and Krammer, P. H. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188, 2033–2045.

    CAS  PubMed  Google Scholar 

  • Miyashita, T. and Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299.

    CAS  PubMed  Google Scholar 

  • Moroni, M. C., Hickman, E. S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., Muller, H., and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3, 552–558.

    CAS  PubMed  Google Scholar 

  • Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C. B., Wong, S. L., Ng, SL., and Fesik, S. W. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341.

    CAS  PubMed  Google Scholar 

  • Munsch, D., Watanabe-Fukunaga, R., Bourdon, J. C., Nagata, S., May, E., Yonish-Rouach, E., and Reisdorf, P. (2000). Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. J Biol Chem 275, 3867–3872.

    CAS  PubMed  Google Scholar 

  • Murphy, M., Ahn, J., Walker, K. K., Hoffman, W. H., Evans, R. M., Levine, A. J., and George, D. L. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13, 2490–2501.

    CAS  PubMed  Google Scholar 

  • Nagata, S. (1999). Fas ligand-induced apoptosis. Annu Rev Genet. 33:29–55.

    CAS  PubMed  Google Scholar 

  • Nakano, K. and Vousden, K. (2001). H. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683–694.

    CAS  PubMed  Google Scholar 

  • O’Connor, P. M., Jackman, J., Bae, I., Myers, T. G., Fan, S., Mutoh, M., Scudiero, D. A., Monks, A., Sausville, E. A., Weinstein, J. N., Friend, S., Fornace, A. J., Jr., and Kohn, K. W. (1997). Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57, 4285–4300.

    PubMed  Google Scholar 

  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000a). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058.

    CAS  PubMed  Google Scholar 

  • Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y. (2000b). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862.

    CAS  PubMed  Google Scholar 

  • Okamura, S., Arakawa, H., Tanaka, T., Nakanishi, H., Ng, C. C., Taya, Y., Monden, M., Nakamura, Y. (2001). p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell. 8, 85–94.

    CAS  PubMed  Google Scholar 

  • Owen-Schaub, L. B., Zhang, W., Cusack, J. C., Angelo, L. S., Santee, S. M., Fujiwara, T., Roth, J. A., Deisseroth, A. B., Zhang, W. W., Kruzel, E., et al. (1995). Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell Biol. 15, 3032–3040.

    CAS  PubMed  Google Scholar 

  • Ozoren, N. and El-Deiry, W. S. (2003). Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13, 135–1347.

    PubMed  Google Scholar 

  • Ozoren, N., Fisher, M. J., Kim, K., Liu, C. X., Genin, A., Shifman, Y., Dicker, D. T., Spinner, N. B., Lisitsyn, N. A., and El-Deiry, W. S. (2000). Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. Int J Oncol 16, 917–925.

    CAS  PubMed  Google Scholar 

  • Pai, S. I., Wu, G. S., Ozoren, N., Wu, L., Jen, J., Sidransky, D., and El-Deiry, W. S. (1998). Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58, 3513–3518.

    CAS  PubMed  Google Scholar 

  • Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., and Dixit, V. M. (1997a). The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113.

    CAS  PubMed  Google Scholar 

  • Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., and Dixit, V. M. (1997b). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815–818.

    CAS  PubMed  Google Scholar 

  • Riedl, S. J. and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5, 897–907.

    CAS  PubMed  Google Scholar 

  • Pearson, A. S., Spitz, F. R., Swisher, S. G., Kataoka, M., Sarkiss, M. G., Meyn, R. E., McDonnell, T. J., Cristiano, R. J., and Roth, J. A. (2000). Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated p53 gene transfer in lung cancer cells. Clin Cancer Res 6, 887–890.

    CAS  PubMed  Google Scholar 

  • Pohl, U., Wagenknecht, B., Naumann, U., and Weller, M. (1999). p53 enhances BAK and CD95 expression in human malignant glioma cells but does not enhance CD95L-induced apoptosis. Cell Physiol Biochem 9, 29–37.

    CAS  PubMed  Google Scholar 

  • Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Vogelstein, B. (1997). A model for p53-induced poptosis. Nature. 389:300–5.

    CAS  PubMed  Google Scholar 

  • Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P., and Ellisen, L. W. (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9, 45–56.

    CAS  PubMed  Google Scholar 

  • Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P., and Hay, R. T. (2000). Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20, 8458–8467.

    CAS  PubMed  Google Scholar 

  • Roy, S., Packman, K., Jeffrey, R., and Tenniswood, M. (2005). Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ 12, 482–491.

    CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar, C., Ruiz-Ruiz, C., Rodriguez, A., Ortiz-Ferron, G., Redondo, J. M., and Lopez-Rivas, A. (2004). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) decoy receptor TRAIL-R3 is up-regulated by p53 in breast tumor cells through a mechanism involving an intronic p53-binding site. J Biol Chem 279, 4093–4101.

    CAS  PubMed  Google Scholar 

  • Ryan, A. E., Shanahan, F., O’Connell, J., and Houston, A. M. (2005). Addressing the “Fas counterattack” controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res 65, 9817–9823.

    CAS  PubMed  Google Scholar 

  • Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M., Yoon, H. S., Shuker, S. B., Chang, B. S., Minn, A. J., Thompson, C. B., and Fesik, S. W. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986.

    CAS  PubMed  Google Scholar 

  • Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J., and El-Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4, 842–849.

    CAS  PubMed  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17, 1675–1687.

    CAS  PubMed  Google Scholar 

  • Sheikh, M. S., Huang, Y., Fernandez-Salas, E. A., El-Deiry, W. S., Friess, H., Amundson, S., Yin, J., Meltzer, S. J., Holbrook, N. J., and Fornace, A. J., Jr. (1999). The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18, 4153–4159.

    CAS  PubMed  Google Scholar 

  • Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., and Ashkenazi, A. (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818–821.

    CAS  PubMed  Google Scholar 

  • Shetty, S., Graham, B. A., Brown, J. G., Hu, X., Vegh-Yarema, N., Harding, G., Paul, J. T., and Gibson, S. B. (2005). Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 25, 5404–5416.

    CAS  PubMed  Google Scholar 

  • Shibue, T., Takeda, K., Oda, E., Tanaka, H., Murasawa, H., Takaoka, A., Morishita, Y., Akira, S., Taniguchi, T., and Tanaka, N. (2003). Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17, 2233–2238.

    CAS  PubMed  Google Scholar 

  • Shin, M. S., Kim, H. S., Lee, S. H., Park, W. S., Kim, S. Y., Park, J. Y., Lee, J. H., Lee, S. K., Lee, S. N., Jung. S. S., Han, J. Y., Kim, H., Lee, J. Y., and Yoo, N. J. (2001). Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61, 4942–4946.

    CAS  PubMed  Google Scholar 

  • Snyder, E. L., Meade, B. R., Saenz, C. C., and Dowdy, S. F. (2004). Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol E36.

    Google Scholar 

  • Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W., and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159.

    CAS  PubMed  Google Scholar 

  • Soengas, M. S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J. G., Gerald, W. L., Lazebnik, Y. A., Cordon-Cardo, C., and Lowe, S. W. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211.

    CAS  PubMed  Google Scholar 

  • Sun, Y. and Leaman, D. W. (2005). Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection. J Biol Chem 280(16), 15561–15568.

    CAS  PubMed  Google Scholar 

  • Takimoto, R. and El-Deiry, W. S. (2000). Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19, 1735–1743.

    CAS  PubMed  Google Scholar 

  • Takimoto, R., Wang, W., Dicker, D. T., Rastinejad, F., Lyssikatos, J., and El-Deiry, W. S. (2002). The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther 1, 47–55.

    CAS  PubMed  Google Scholar 

  • Takimoto, R., Kato, J., Terui, T., Takada, K., Kuroiwa, G., Wu, J., Ohnuma, H., Takahari, D., Kobune, M., Sato, Y., Takayama, T., Matsunaga, T., and Niitsu, Y. (2005). Augmentation of Antitumor Effects of p53 Gene Therapy by Combination with HDAC Inhibitor. Cancer Biol. Ther. 4, 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Tanikawa, C., Matsuda, K., Fukuda, S., Nakamura, Y., and Arakawa, H. (2003). p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5, 216–222.

    CAS  PubMed  Google Scholar 

  • Thiery, J., Abouzahr, S., Dorothee, G., Jalil, A., Richon, C., Vergnon, I., Mami-Chouaib, F., and Chouaib, S. (2005). p53 potentiation of tumor cell susceptibility to CTL involves Fas and mitochondrial pathways. J Immunol 174, 871–878.

    CAS  PubMed  Google Scholar 

  • Terui, T., Murakami, K., Takimoto, R., Takahashi, M., Takada, K., Murakami, T., Minami, S., Matsunaga, T., Takayama, T., Kato, J., and Niitsu, Y. (2003). Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res 63, 8948–8954.

    CAS  PubMed  Google Scholar 

  • Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A, Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U. M. (2006). WTp53 but not tumor-derived mutants bind to BCL2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281, 8600.

    CAS  PubMed  Google Scholar 

  • Tovar, C., Rosinski, J., Filipovic, Z., Higgins, B., Kolinsky, K., Hilton, H., Zhao, X., Vu, B. T., Qing, W., Packman, K., Myklebost, O., Heimbrook, D. C., and Vassilev, L. T. (2006). Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy. Proc Natl Acad Sci USA 103, 1888–1893.

    CAS  PubMed  Google Scholar 

  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E. A. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848.

    CAS  PubMed  Google Scholar 

  • Villunger, A., Michalak, E. M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M. J., Adams, J. M., and Strasser, A. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038.

    CAS  PubMed  Google Scholar 

  • Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307–310.

    CAS  PubMed  Google Scholar 

  • Wang, S. and El-Deiry, W. S. (2003a). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628–8633.

    CAS  PubMed  Google Scholar 

  • Wang, S. and El-Deiry, W. S. (2003b). Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci USA 100, 15095–15100.

    CAS  PubMed  Google Scholar 

  • Wang, S. and El-Deiry, W. S. (2004a). Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Res 64, 6666–7662.

    CAS  PubMed  Google Scholar 

  • Wang, W. and El-Deiry, W. S. (2004b). Targeting p53 by PTD-mediated transduction. Trends Biotechnol 22, 431–434.

    CAS  PubMed  Google Scholar 

  • Wang, W., Takimoto, R., Rastinejad, F., and El-Deiry, W. S. (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 23, 2171–2181.

    CAS  PubMed  Google Scholar 

  • Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    CAS  PubMed  Google Scholar 

  • Weinstein, J. N., Myers, T. G., O’Connor, P. M., Friend, S. H., Fornace, A. J. Jr., Kohn, K. W., Fojo, T., Bates, S. E., Rubinstein, L. V., Anderson, N. L., Buolamwini, J. K., van Osdol, W. W., Monks, A. P., Scudiero, D. A., Sausville, E. A., Zaharevitz, D. W., Bunow, B., Viswanadhan, V. N., Johnson, G. S., Wittes, R. E., and Paull, K. D. (1997). An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349.

    CAS  PubMed  Google Scholar 

  • Wu, G. S., Burns, T. F., McDonald, E. R., III, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Markowitz, S., Wu, G., and El-Deiry, W. S. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17, 141–143.

    CAS  PubMed  Google Scholar 

  • Wu, W. S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., and Look, A. T. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641–653.

    CAS  PubMed  Google Scholar 

  • Wu, Y., Mehew, J. W., Heckman, C. A., Arcinas, M., and Boxer, L. M. (2001). Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20, 240–251.

    CAS  PubMed  Google Scholar 

  • Xiao, S., Marshak-Rothstein, A., and Ju, S. T. (2001). Sp1 is the major fasl gene activator in abnormal CD4(−) CD8(−) B220(+) T cells of lpr and gld mice. Eur J Immunol 31, 3339–3348.

    CAS  PubMed  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W., and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673–682.

    CAS  PubMed  Google Scholar 

  • Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B., and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100, 1931–1936.

    CAS  PubMed  Google Scholar 

  • Zha, J., Weiler, S., Oh, K. J., Wei, M. C., and Korsmeyer, S. J. (2000). Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765.

    CAS  PubMed  Google Scholar 

  • Zinkel, S. S., Hurov, K. E., Ong, C., Abtahi, F. M., Gross, A., and Korsmeyer, S. J. (2005). A role for proapoptotic BID in the DNA-damage response. Cell 122, 579–591.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Ayer, R. E., Davis, S. L., Ames, S. J., Florence, B., Torchinsky, C., Liou, J. S., Shen, L., and Spanjaard, R. A. (2005). Apoptosis factor EI24/PIG8 is a novel endoplasmic reticulum-localized Bcl-2-binding protein which is associated with suppression of breast cancer invasiveness. Cancer Res 65, 2125–2129.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Kuribayashi, K., El-Deiry, W.S. (2008). Regulation of Programmed Cell Death by the P53 Pathway. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_10

Download citation

Publish with us

Policies and ethics