Skip to main content

Dry in the Water: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces

  • Chapter
Book cover Functional Surfaces in Biology

Abstract

Over millions of years plant surfaces evolved optimized complex multifunctional interfaces. They fulfill different functions in terrestrial plants such as limitation of uncontrolled water loss, protection against various biotic and abiotic influences, and they play a role in the attachment of insects. A recent overview on plant surface functions is presented by Jeffree (in Riederer, 2006). One of the most remarkable functions is closely linked with plant epicuticular waxes. The outermost barrier is formed by a cuticle consisting of two major components: a polyester matrix with embedded and overlaying lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam NK (1963) Principles of water-repellency. In: Waterproofing and water-repellency ed by. Moilliet JL. Amsterdam: Elsevier, pp. 1–23.

    Google Scholar 

  • Alberti G, DeSimone A (2005) Wetting of rough surfaces: a homogenization approach. Proceedings of the Royal Society London A 461: 79–97.

    Article  CAS  Google Scholar 

  • Andrews FM, Ellis MM (1913) Some observations concerning the reactions of leaf hairs of Salvinia natans. Torrey Botany Club Bulletin 40: 441–445.

    Article  Google Scholar 

  • Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: The plant cuticle ed by. Cutler DF, Alvin KL, Price CE. London: Academic Press, pp. 139–166.

    Google Scholar 

  • Balasubramanian AK, Miller AC, Rediniotis OK (2004) Microstructured hydrophobic skin for hydrodynamic drag reduction. AIAA Journal 42: 411–414.

    Article  Google Scholar 

  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans Review No. 3: Structure-function relationships of the plant cuticle and cuticular waxes – a smart material. Functional Plant Biology 33: 893–910.

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1–8.

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126: 237–260.

    Article  Google Scholar 

  • Barthlott W, Riede K, Wolter M (1994) Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae). Amazoniana 13: 47–58.

    Google Scholar 

  • Barthlott W, Wollenweber E (1981) Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. Tropische und Subtropische Pflanzenwelt 32: 7–67.

    Google Scholar 

  • Born A, Ermuth J, Neinhuis C (2000) Fassadenfarbe mit Lotus-Effekt: Erfolgreiche Übertragung bestätigt. Phänomen Farbe 2: 34–36.

    Google Scholar 

  • Bush JWM, Hu DL (2006) Walking on water: Biolocomotion at the Interface. Annual Review of Fluid Mechanics 38: 339–369.

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Transactions of the Faraday Society 40: 546–551.

    Article  CAS  Google Scholar 

  • Cerman Z, Striffler BF, Barthlott W, Stegmeier T, Scherrieble A, von Arnim V (2006) Superhydrophobe Oberflächen für Unterwasseranwendungen. Patent, DE 10 2006 009 761: 1–13.

    Google Scholar 

  • Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir 15: 3395–3399.

    Article  CAS  Google Scholar 

  • Choi C-H, Kim C-J (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters 96: 4.

    Google Scholar 

  • Cottin-Bizonne C, Barrat J-L, Bocquet L, Charlaix E (2003) Low friction flows of liquids at nanopatterned interfaces. Nature Materials 2: 238.

    Article  CAS  Google Scholar 

  • Crisp DJ (1963) Waterproofing mechanisms in animals and plants. In: Waterproofing and water-repellency ed by. Moilliet JL. New York: Elsevier, pp. 416–481.

    Google Scholar 

  • Crisp DJ, Thorpe WH (1950) A simple replica technique suitable for the study of surface structures. Nature 165: 273.

    Article  PubMed  CAS  Google Scholar 

  • De Gennes PG (1985) Wetting: statics and dynamics. Reviews of Modern Physics 57: 827–863.

    Article  Google Scholar 

  • Fogg GE (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 329: 515.

    Article  Google Scholar 

  • Fogg GE (1948) Adhesion of water to the external surfaces of leaves. Discussions of the Faraday Society 3: 162–169.

    Article  Google Scholar 

  • Fukagata K, Kasagi N, Koumoutsakos P (2006) A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Physics of fluids 18: 1–8.

    Google Scholar 

  • Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T, Kunitake Y (2001) Frictional drag reduction with air lubricant over a super-water-repellent surface. Journal of Marine Science and Technology 5: 123–130.

    Article  Google Scholar 

  • Fürstner R (2002) Untersuchungen zum Einfluss von Struktur und Chemie auf die Benetzbarkeit und die Selbstreinigung superhydrophober Oberflächen. Aachen: Shaker-Verlag.

    Google Scholar 

  • Günther I, Wortmann GB (1966) Dust on the surface of leaves. Journal of Ultrastructure Research 15: 522–527.

    Article  PubMed  Google Scholar 

  • Hall DM, Burke W (1974) Wettability of leaves of a selection of New Zealand plants. New Zealand Journal of Botany 12: 283–298.

    Google Scholar 

  • Henoch C, Krupenkin TN, Kolodner P, Taylor JA, Hodes MS, Lyons AM (2006) Turbulent drag reduction using superhydrophobic surfaces. In: 3rd AIAA Flow Control Conference, 5–8 June 2006, San Francisco, CA ed by. Breuer K. Reston, VA: American Institute of Aeronautics and Astronautics, pp. AIAA Paper 2006–3192.

    Google Scholar 

  • Herzog R (1934) Anatomische und experimentell-morphologische Untersuchungen über die Gattung Salvinia. Planta 22: 490–514.

    Article  Google Scholar 

  • Herzog R (1935) Ein Beitrag zur Systematik der Gattung Salvinia. Hedwigia 74: 257–284.

    Google Scholar 

  • Holloway PJ (1969a) The effects of superficial wax on leaf wettability. Annals of applied biology 63: 145–153.

    Google Scholar 

  • Holloway PJ (1969b) Chemistry of leaf waxes in relation to wetting. Journal of the science of food and agriculture 20: 124–128.

    Google Scholar 

  • Holloway PJ (1970) Surface factors affecting the wetting of leaves. Pesticide science 1: 156–163.

    Article  CAS  Google Scholar 

  • Holloway PJ (1971) The chemical and physical characteristics of leaf surfaces. In: Ecology of leaf surface micro-organisms ed by. Preece TF, Dickinson CH. New York.

    Google Scholar 

  • Jacono C, Pitman B (2001) Salvinia molesta: Around the world in 70 years. Aquatic Nuisance Species Digest 4: 13–16.

    Google Scholar 

  • Jeffree CE (2006) The fine structure of the plant cuticle. In: Biology of the plant cuticle ed by. Riederer M, Müller C. Oxford: Blackwell Publishing, pp. 11–125.

    Chapter  Google Scholar 

  • Jopp J, Grüll H, Yerushalmi-Rozen R (2004) Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir 20: 10015–10019.

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE, Bradley DE (1958) The carbon replica technique in the study of the ultrastructure of leaf surfaces. Journal of Ultrastructure Research 2: 16–27.

    Article  Google Scholar 

  • Kam-Wing L, Furtado JI (1977) The chemial control of Salvinia molesta (Mitchell) and some related toxicological studies. Hydrobiologia 56: 49–61.

    Article  CAS  Google Scholar 

  • Kaul RB (1976) Anatomical observations on floating leaves. Aquatic Botany 2: 215–234.

    Article  Google Scholar 

  • Kawashima H, Kakugawa A, Kodama Y, Takahashi T (1998). A Relation Between Drag Reduction and the Distribution of Microbubbles. Tokyo: Ship Research Institute, pp. 1–3.

    Google Scholar 

  • Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57: 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Kodama Y (1998). Effect of Microbubble Distribution on Skin Friction Reduction. Tokyo: Ship Research Institute, pp. 1–4.

    Google Scholar 

  • Kodama Y, Kakugawa A, Takahashi T, Nagaya S, Kawamura T (2001). Drag Reduction of Ships by Microbubbles. National Maritime Research Institute of Japan.

    Google Scholar 

  • Kodama Y, Kakugawa A, Takahashi T, Nagaya S, Sugiyama K (2003) Microbubbles: Drag reduction mechanism and applicability to ships. In: 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan ed by. Board NS Washington: The National Academies Press, pp. 1–20.

    Google Scholar 

  • Köhler D (1991) Notes on the diving behaviour of the water shrew, Neomys fodiens (Mammalia, Soricidae). Zoologischer Anzeiger 227: 218–228.

    Google Scholar 

  • Kopp J (1936) Über die Kulturbedingungen und die systematischen Merkmale der Salviniaartn. Inaugural-Dissertation, Buchdruckerei Heinrich Pöppinghaus, Münster, 48.

    Google Scholar 

  • Lafuma A, Quéré D (2003) Superhydrophobic states. Nature Materials 2: 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Lee S-M, Kwon TH (2006) Mass-producible replication of highly hydrophobic surfaces from plant leaves. Nanotechnology 17: 3189–3196.

    Article  CAS  Google Scholar 

  • Lee S-M, Lee HS, Kim DS, Kwon TH (2006) Fabrication of hydrophobic films replicated from plant leaves in nature. Surface and Coatings Technology 201: 553–559.

    Article  CAS  Google Scholar 

  • Linskens HF (1950) Quantitative Bestimmung der Benetzbarkeit von Blattoberflächen. Planta 38: 591–600.

    Article  Google Scholar 

  • Linskens HF (1952) Über die Änderung der Benetzbarkeit von Blattoberflächen und deren Ursache. Planta 41: 40–51.

    Article  CAS  Google Scholar 

  • London: Academic Press, pp. 39–53.

    Google Scholar 

  • Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19: 8343–8348.

    Article  CAS  Google Scholar 

  • Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20: 3517–3519.

    Article  PubMed  CAS  Google Scholar 

  • Marmur A (2006) Underwater superhydrophobicity: Theoretical Feasibility. Langmuir 22: 1400–1402.

    Article  PubMed  CAS  Google Scholar 

  • McCormick ME, Bhattacharyya R (1973) Drag Reduction of a Submersible Hull by Electrolysis. Naval Engineers Journal April: 11–16.

    Google Scholar 

  • McHale G, Shirtcliffe NJ, Newton MI (2004) Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20: 10146–10149.

    Article  PubMed  CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79: 667–677.

    Article  Google Scholar 

  • Neinhuis C, Wolter M, Barthlott W (1992) Epicuticular wax of Brassica oleracea: changes of microstructure and ability to be contaminated of leaf surfaces after application of TRITON X-100. Journal of Plant Diseases and Protection 99: 542–549.

    CAS  Google Scholar 

  • Nelson LS, Skogerboe JG, Getsinger KD (1991) Herbicide evaluation against giant Salvinia. Journal Aquatic Plant Management 39: 48–53.

    Google Scholar 

  • Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15: 4321–4323.

    Article  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and Environmental Plant Physiology. Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Nun E, Oles M, Schleich B (2002) Lotus-Effect®-surfaces. Macromolecular Symposia 187: 677–682.

    Article  CAS  Google Scholar 

  • Osawa S, Yabe M, Miyamura M, Mizuno K (2006) Preparation of super-hydrophobic surface on biodegradable polymer by transcribing microscopic pattern of water-repellent leaf. Polymer 47: 3711–3714.

    Article  CAS  Google Scholar 

  • Paffett JAH (1972) Improvements in and relating to water-borne vessels. UK 1 300 132: 1–6.

    Google Scholar 

  • Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19: 1249–1253.

    Article  CAS  Google Scholar 

  • Pringsheim N (1863) Zur Morphologie der Salvinia natans. Jahrbuch für wissenschaftliche Botanik 3: 484–541.

    Google Scholar 

  • Quéré D (2002a) Fakir droplets. Nature Materials 1: 14–15.

    Google Scholar 

  • Quéré D (2002b) Rough ideas on wetting. Physica A 313: 32–46.

    Google Scholar 

  • Quéré D (2005) Non-sticking drops. Reports on Progress in Physics 68: 2495–2532.

    Article  Google Scholar 

  • Rentschler I (1971) Die Wasserbenetzbarkeit von Blattoberflächen und ihre submikroskopische Struktur. Planta 96: 119–135.

    Article  Google Scholar 

  • Ribeiro TH, Rubio J, Smith RW (2003) A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Science andTechnology Bulletin 8: 483–489.

    Article  CAS  Google Scholar 

  • Riederer M, Müller C, eds. (2006) Biology of the plant cuticle. Oxford: Blackwell Publishing, pp. 456.

    Book  Google Scholar 

  • Room PM, Harley KLS, Forno IW, Sands DPA (1981) Successful biological control of the floating weed Salvinia. Nature 294: 78–80.

    Article  Google Scholar 

  • Schwab M, Noga G, Barthlott W (1995) Bedeutung der Epicuticularwachse für die Pathogenabwehr am Beispiel von Botrytis cinerea-Infektionen bei Kohlrabi und Erbse. Gartenbauwissenschaft 60: 102–109.

    CAS  Google Scholar 

  • Sharifi MR, Gibson AC, Rundel PW (1997) Surface dust impacts on gas exchange in Mojave Desert shrubs. Journal of applied Ecology 34: 837–846.

    Article  Google Scholar 

  • Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. Journal of Physical Chemistry 100: 19512–19517.

    Article  CAS  Google Scholar 

  • Sota ERdl (1962a) Contribucion al concimiento de las Salviniaceae neotropicales. I. Salvinia oblongifolia Martius. itDarwiniana 12: 465–498.

    Google Scholar 

  • Sota ERdl (1962b) Contribucion al concimiento de las Salviniaceae neotropicales. III. Salvinia herzogii nov. spec. Darwiniana 12: 499–513.

    Google Scholar 

  • Suter RB, Stratton GE, Miller PR (2004) Taxonomic variation among spiders in the ability to repel water: surface adhesion and hair density. The Journal of Arachnology 32: 11–21.

    Article  Google Scholar 

  • Tokunaga J, Kumada M, Sugiyama Y, Watanabe N, Chong Y-B, Matsubara N (1993) Method of forming air film on submerged surface of submerged part-carrying structure, and film structure on submerged surface. WO 0 616 940 A1: 1–14.

    Google Scholar 

  • Truong V-T (2001). Drag Reduction Technologies. Fishermans Bend Vic; Australia: DSTO Aeronautical and Maritime Research Laboratory, pp. 1–22.

    Google Scholar 

  • University of Tokyo, pp. 1–6.

    Google Scholar 

  • Vogelaar L, Lammertink RGH, Wessling M (2006) Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step. Langmuir 22: 3125–3130.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 28: 988–994.

    Article  CAS  Google Scholar 

  • Werner O, Wagberg L, Lindström T (2005) Wetting of structured hydrophobic surfaces by water droplets. Langmuir 21: 12235–12243.

    Article  PubMed  CAS  Google Scholar 

  • Wulf M, Wehling A, Reis O (2002) Coatings with self-cleaning properties. Macromolecular Symposia 187: 459–467.

    Article  CAS  Google Scholar 

  • Yanagimachi I, Nashida N, Iwasa K, Suzuki H (2005). Enhancement of sensitivity of electrochemical heavy metal detection by evaporative concentration using a super-hydrophobic surface. Transducers 05. Seoul, Korea, 1207–1210.

    Google Scholar 

  • Zawidzki S (1911) Beiträge zur Entwicklungsgeschichte von Salvinia natans. Beihefte Botanisches Zentralblatt 28: 17–65.

    Google Scholar 

  • Ziegenspeck H (1942) Zur physikalischen Chemie unbenetzbarer besonders bewachster Blätter. Kolloid-Zeitschrift 100: 401–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Cerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cerman, Z., Striffler, B.F., Barthlott, W. (2009). Dry in the Water: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6697-9_7

Download citation

Publish with us

Policies and ethics