Skip to main content

The Role of Fas/FasL in the Metastatic Potential of Osteosarcoma and Targeting this Pathway for the Treatment of Osteosarcoma Lung Metastases

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 152))

Abstract

Pulmonary metastases remain the main cause of death in patients with Osteosarcoma (OS). In order to identify new targets for treatment, our laboratory has focused on understanding the biological properties of the tumor microenvironment that contribute to or interfere with metastasis. Dysfunction of the Fas/FasL signaling pathway has been implicated in tumor development, and progression. Here we describe the status of Fas expression in murine nonmetastatic K7 and metastatic K7M2 cells and human nonmetastatic SAOS and LM2 and metastatic LM6 OS cells. We demonstrated that Fas expression correlates inversely with metastatic potential. Pulmonary metastases from patients were uniformly Fas supporting the importance of Fas expression to the metastatic potential. Since FasL is constitutively expressed in the lung, our data suggests that Fas+ tumor cells undergo apoptosis and are cleared from the lung. By contrast, Fas tumor cells evade this host defense mechanism and form lung metastases. We confirmed these findings by blocking the Fas pathway using Fas Associated Death Domain Dominant-Negative (FDN). Fas+ cells transfected with FDN were not sensitive to FasL, showed delayed clearance and formed lung metastases. Fas+ cells were also able to form lung metastases in FasL-deficient mice. Using our mouse model systems, we demonstrated that aerosol treatment with liposomal 9-Nitrocamptothecin and Gemcitabine (chemotherapeutic agents known to upregulate Fas expression) increased Fas expression and induced tumor regression in wild type mice. Lung metastases in FasL deficient mice did not respond to the treatment.

We conclude that Fas is an early defense mechanism responsible for clearing invading Fas+ tumor cells from the lung. Fas cells or cells with a nonfunctional Fas pathway evade this defense mechanism and form lung metastases. Therapy that induces Fas expression may therefore be effective in patients with established OS lung metastases. Aerosol delivery of these agents is an ideal way to target treatment to the lung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marina N, et al. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9(4):422-41.

    Article  PubMed  Google Scholar 

  2. Meyers PA, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: The Memorial Sloan-Kettering experience. J Clin Oncol. 1992;10(1):5-15.

    CAS  PubMed  Google Scholar 

  3. Kager L, et al. Primary metastatic osteosarcoma: Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011-8.

    Article  PubMed  Google Scholar 

  4. Verschraegen CF, et al. Feasibility, phase I, and pharmacological study of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced malignancies in the lungs. Ann N Y Acad Sci. 2000;922:352-4.

    Article  CAS  PubMed  Google Scholar 

  5. Khanna C, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10(2):182-6.

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19(3):292-315.

    Article  CAS  PubMed  Google Scholar 

  7. Goorin AM, et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: A pediatric oncology group trial. J Clin Oncol. 2002;20(2):426-33.

    Article  CAS  PubMed  Google Scholar 

  8. Goorin AM, et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J Clin Oncol. 2003;21(8):1574-80.

    Article  CAS  PubMed  Google Scholar 

  9. Bruland OS, Pihl A. On the current management of osteosarcoma: A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer. 1997;33(11):1725-31.

    Article  CAS  PubMed  Google Scholar 

  10. Owen-Schaub L, et al. Fas and Fas ligand interactions in malignant disease. Int J Oncol. 2000;17(1):5-12.

    CAS  PubMed  Google Scholar 

  11. Nagata S. Apoptosis by death factor. Cell. 1997;88(3):355-65.

    Article  CAS  PubMed  Google Scholar 

  12. Owen-Schaub LB, et al. Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med. 1998;188(9):1717-23.

    Article  CAS  PubMed  Google Scholar 

  13. Algeciras-Schimnich A, et al. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol. 2002;22(1):207-20.

    Article  CAS  PubMed  Google Scholar 

  14. Ferguson TA, Griffith TS. A vision of cell death: Insights into immune privilege. Immunol Rev. 1997;156:167-84.

    Article  CAS  PubMed  Google Scholar 

  15. Lee HO, Ferguson TA. Biology of FasL. Cytokine Growth Factor Rev. 2003;14(3-4):325-35.

    Article  CAS  PubMed  Google Scholar 

  16. Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol. 2001;2(12):917-24.

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson TA, Green DR. Fas-ligand and immune privilege: The eyes have it. Cell Death Differ. 2001;8(7):771-2.

    Article  CAS  PubMed  Google Scholar 

  18. Griffith TS, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270(5239):1189-92.

    Article  CAS  PubMed  Google Scholar 

  19. Griffith TS, et al. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity. 1996;5(1):7-16.

    Article  CAS  PubMed  Google Scholar 

  20. Moller P, et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer. 1994;57(3):371-7.

    Article  CAS  PubMed  Google Scholar 

  21. Hill LL, et al. Fas ligand: A sensor for DNA damage critical in skin cancer etiology. Science. 1999;285(5429):898-900.

    Article  CAS  PubMed  Google Scholar 

  22. Zornig M, et al. Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV. Oncogene. 1995;10(12):2397-401.

    CAS  PubMed  Google Scholar 

  23. Jia SF, Worth LL, Kleinerman ES. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis. 1999;17(6):501-6.

    Article  CAS  PubMed  Google Scholar 

  24. Khanna C, et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61(9):3750-9.

    CAS  PubMed  Google Scholar 

  25. Khanna C, et al. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis. 2000;18(3):261-71.

    Article  CAS  PubMed  Google Scholar 

  26. Worth LL, et al. Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep. 2002;9(4):823-7.

    CAS  PubMed  Google Scholar 

  27. Koshkina NV, Kleinerman ES. Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int J Cancer. 2005;116(3):458-63.

    Article  CAS  PubMed  Google Scholar 

  28. Gordon N, et al. Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res. 2007;13(15 Pt 1):4503-10.

    Article  CAS  PubMed  Google Scholar 

  29. Gordon N, et al. Fas expression in lung metastasis from osteosarcoma patients. J Pediatr Hematol Oncol. 2005;27(11):611-5.

    Article  PubMed  Google Scholar 

  30. Lafleur EA, et al. Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res. 2004;10(23):8114-9.

    Article  CAS  PubMed  Google Scholar 

  31. Koshkina NV, et al. Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: The role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res. 2007;5(10):991-9.

    Article  CAS  PubMed  Google Scholar 

  32. Koshkina NV, et al. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res. 2000;6(7):2876-80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Joyce Furlough for her clerical assistance. This work was supported in part by NCI grant CA42992 (ESK) and NIH Core grant CA16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gordon, N., Kleinerman, E.S. (2009). The Role of Fas/FasL in the Metastatic Potential of Osteosarcoma and Targeting this Pathway for the Treatment of Osteosarcoma Lung Metastases. In: Jaffe, N., Bruland, O., Bielack, S. (eds) Pediatric and Adolescent Osteosarcoma. Cancer Treatment and Research, vol 152. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0284-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0284-9_29

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0283-2

  • Online ISBN: 978-1-4419-0284-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics