Skip to main content

Docking to Large Allosteric Binding Sites on Protein Surfaces

  • Conference paper
  • First Online:
Advances in Computational Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 680))

Abstract

The inactive porphobilinogen synthase (PBGS) hexamer has an oligomer-specific and phylogenetically variable surface cavity that is not present in the active octamer. The octamer and hexamer are components of a dynamic quaternary structure equilibrium characteristic of morpheeins. Small molecules that bind to the hexamer-specific surface cavity, which is at the interface of three subunits, are predicted to act as allosteric inhibitors that function by drawing the oligomeric equilibrium toward the hexamer. We used GLIDE as a tool to enrich a 250,000 molecule library for molecules with enhanced probability of acting as hexamer-stabilizing allosteric inhibitors of PBGS from Yersinia enterocolitica. Eighty-six compounds were tested in vitro and five showed hexamer stabilization. We discuss the application of computational docking to surface cavities as an approach to find allosteric modulators of protein function with specific reference to morpheeins that function as an equilibrium of non-additive quaternary structure assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monod, J, et al., J Mol Biol, 1963. 6:306–329.

    Article  PubMed  CAS  Google Scholar 

  2. Bond, CJ, et al., Biochemistry, 2000. 39(50): 15333–15343.

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez-Ruiz, D, Gohlke, H, Curr Med Chem, 2006. 13(22):2607–2625.

    Article  PubMed  CAS  Google Scholar 

  4. Lawrence, SH, et al., J Biol Chem, 2009. 284:35807–35817.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence, SH, et al., Chem Biol, 2008. 15(6):586–596.

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez, J, Shoichet, B, Virtual Screening in Drug Discovery. 1st ed. 2005, Boca Raton, FL: CRC Press. 470.

    Google Scholar 

  7. Arkin, MR, et al., Proc Natl Acad Sci USA, 2003. 100(4):1603–1608.

    Article  PubMed  CAS  Google Scholar 

  8. Li, Y, et al., Structure, 2005. 13(2): 297–307.

    Article  PubMed  CAS  Google Scholar 

  9. Jaffe, EK, Chem Biol, 2003. 10(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  10. Breinig, S, et al., Nat Struct Biol, 2003. 10(9): 757–763.

    Article  PubMed  CAS  Google Scholar 

  11. Kokona, B, et al., Biochemistry, 2008. 47(40): 10649–10656.

    Article  PubMed  CAS  Google Scholar 

  12. Selwood, T, et al., Biochemistry, 2008. 47(10):3245–3257.

    Article  PubMed  CAS  Google Scholar 

  13. Tang, L, et al., J Biol Chem, 2006. 281(10): 6682–6690.

    Article  PubMed  CAS  Google Scholar 

  14. Tang, L, et al., J Biol Chem, 2005. 280(16):15786–15793.

    Article  PubMed  CAS  Google Scholar 

  15. Jaffe, EK, Trends Biochem Sci, 2005. 30(9):490–497.

    Article  PubMed  CAS  Google Scholar 

  16. Jaffe, EK and Stith, L, Am J Hum Genet, 2007. 80(2):329–337.

    Article  PubMed  CAS  Google Scholar 

  17. Erskine, PT, et al., Nat Struct Biol, 1997. 4(12):1025–1031.

    Article  PubMed  CAS  Google Scholar 

  18. Berman, HM, et al., Nucleic Acids Res, 2000. 28(1):235–242.

    Article  PubMed  CAS  Google Scholar 

  19. Jaffe, EK, Bioorg Chem, 2004. 32(5): 316–325.

    Article  PubMed  CAS  Google Scholar 

  20. Frere, F, et al., J Mol Biol, 2002. 320(2): 237–247.

    Article  PubMed  CAS  Google Scholar 

  21. Halgren, TA, et al., J. Med Chem, 2004. 47: 1750–1759.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Susan Slechta for in vivo testing of inhibitors, the Fox Chase Cancer Center High Performance Computing Cluster, and grant support from the National Institutes of Health grants R01 ES003654 (EKJ), R21 AI063324 (EKJ), P30 CA006927 (FCCC), and T32 CA009035 (Institute for Cancer Research, a component of FCCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen K. Jaffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ramirez, U.D., Myachina, F., Stith, L., Jaffe, E.K. (2010). Docking to Large Allosteric Binding Sites on Protein Surfaces. In: Arabnia, H. (eds) Advances in Computational Biology. Advances in Experimental Medicine and Biology, vol 680. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5913-3_54

Download citation

Publish with us

Policies and ethics