Skip to main content

Epigenetic Deregulation in Rheumatoid Arthritis

  • Chapter
Book cover Epigenetic Contributions in Autoimmune Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 711))

Abstract

In this chapter, we discuss the current understanding of the possible epigenetics changes that occur in rheumatoid arthritis. In particular, we describe that deregulation of DNA methylation and histone modifications can occur in the immune system and lead to rheumatoid arthritis. In addition, we discuss the role of rheumatoid arthritis synovial fibroblasts in autoimmunity. Examples of changes in DNA methylation and histone modification occurring in synovial fibroblasts during the disease process are reviewed in this chapter. In conclusion, we discuss the possible use of epigenetic therapy and describe future experiments that can elucidate further the epigenetic changes observed in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebringer A, Wilson C, Tiwana H. Is rheumatoid arthritis a form of reactive arthritis? J Rheumatol 2000;27:559–563.

    PubMed  CAS  Google Scholar 

  2. Nepom GT, Byers P, Seyfried C et al. HLA genes associated with rheumatoid arthritis. Identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum 1989;32:15–21.

    Article  PubMed  CAS  Google Scholar 

  3. Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6(8):597–610.

    Article  PubMed  CAS  Google Scholar 

  4. Alercon-Segovia D, Alecon-Riquelme ME, Cardiel MH et al. Famillial aggregation of sistemi lupus erythematosus, rheumatoid arthritis and other autoimmune diseases in 1,177 lupus patients from the GLADEL color. Arthritis Rheum 2005;52:1138–1147.

    Article  Google Scholar 

  5. Orozco G, Rueda B, Martin J. Genetic basis of rheumatoid arthritis. Biomed Pharmacother 2006;60:656–662.

    Article  PubMed  CAS  Google Scholar 

  6. Orozco G, Pascual-Salcedo D, Lopez-Nevot MA et al. Auto-antibodies, HLA and PTPN22: susceptibility markers for rheumatoid arthritis. Rheumatology 2008;47:138–141.

    Article  PubMed  CAS  Google Scholar 

  7. Costenbader KL, Chang SC, De Vivo I et al. Genetic polymorphisms in PTPN22, PADI-4 and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smocking. Arthritis Res Ther 2008;10:R52.

    Article  PubMed  Google Scholar 

  8. Rogers J, Dieppe P. Skeletal palaeopathology and the rheumatic diseases: where are we now? Ann Rheum Dis 1990;49:885–886.

    Article  PubMed  CAS  Google Scholar 

  9. Rothschild BM. Tennessee origin of rheumatoid arthritis. Res Notes 1991; 5, F.H. McClung Museum.

    Google Scholar 

  10. Gunnell D, Roggers J, Dieppe P. Height and health: predicting longevity from bone length in archaeological remains. J Epidemiol Community Health 2001;55:505–507.

    Article  PubMed  CAS  Google Scholar 

  11. Bridges PS. Prehistoric arthritis in the Americas. Ann Rev Anthropology 1992;21:67–91.

    Article  Google Scholar 

  12. Wordsworth P, Bell J. Polygenic susceptibility in rheumatoid arthritis. Ann Rheum Dis 1991;50:343–346.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobsson LT, Jacobsson ME, Askling J et al. Perinatal characteristics and risk of rheumatoid arthritis. Brit Med J 2003;326:1068–1069.

    Article  PubMed  Google Scholar 

  14. Walker-Bone K, Farrow S. Rheumatoid arthritis. Clin Evid (Online) 1 2007;pii:1124.

    Google Scholar 

  15. Edwards CJ, Goswami R, Goswami P et al. Growth and infectious exposure during infancy and the risk of rheumatoid factor in adult life. Ann Rheum Dis 2006;65:401–404.

    Article  PubMed  CAS  Google Scholar 

  16. Strachan DP. Hay fever, hygiene and household size. Brit Med J 1989;299:1259–1260.

    Article  PubMed  CAS  Google Scholar 

  17. Klareskog L, Stolt P, Lundberg K et al. A new model fo an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006;54:38–46.

    Article  PubMed  CAS  Google Scholar 

  18. Yang SR, Wright J, Bauter M et al. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via Re1A/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implication for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 2007;292:L567–576.

    Article  PubMed  CAS  Google Scholar 

  19. Kawahara TL, Mischishita F, Adler AS et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependant gene expression and organismal life span. Cell 2009;136:62–74.

    Article  PubMed  CAS  Google Scholar 

  20. Smith JB, Haynes MK. Rheumatoid arthritis-a molecular understanding. Ann Intern Med 2002;136:908–922.

    Article  PubMed  Google Scholar 

  21. Ermann J, Fathman CG. Autoimmune diseases: genes, bugs and failed regulation. Nat Immunol 2001;2:759–761.

    Article  PubMed  CAS  Google Scholar 

  22. Grablec AM, Tak PP, Reedquist KA. Trageting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 2008;10:226.

    Article  Google Scholar 

  23. Huber LC, Brock M, Hemmtazad H et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 2007;56:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  24. Garcia BA, Busby SA, Shabanowitz J et al. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J Proteome Res 2005;4:2032–2042.

    Article  PubMed  CAS  Google Scholar 

  25. Chang X, Zhao Y, Sun S et al. The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int 2009;29:1411–1416.

    Article  PubMed  CAS  Google Scholar 

  26. Moscarello MA, Mastronardi FG, Wood DD. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 2007;32:251–256.

    Article  PubMed  CAS  Google Scholar 

  27. Richardon B, Scheinbart L, Strahler J et al. Evidence of impaired T-cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990;33:1665–1673.

    Article  Google Scholar 

  28. Nile CJ, Read RC, Akil M et al. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 2008;58:2686–2693.

    Article  PubMed  Google Scholar 

  29. Karouzakis E, Neidhart M, Gay RE et al. Molecular and cellular basis of rheumatoid joint destruction. Immunol Lett 2006;106:8–13.

    Article  PubMed  CAS  Google Scholar 

  30. Karouzakis E, Gay RE, Gay S. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol 2009;5:266–272.

    Article  PubMed  CAS  Google Scholar 

  31. Muller-Ladner U, Pap T, Gay RE et al. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol 2005;1:102–110.

    Article  PubMed  Google Scholar 

  32. Lafyatis R, Remmers EF, Roberts AB et al. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-beta and retinoids. J Clin Invest 1989;83:1267–1276.

    Article  PubMed  CAS  Google Scholar 

  33. Müller-Ladner U, Kriegsmann J, Gay RE et al. Oncogenes in rheumatoid arthritis. Rheum Dis Clin North Am 1995;21:675–690.

    PubMed  Google Scholar 

  34. Konttinen YT, Ainola M, Valleala H et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 1999;58:691–697.

    Article  PubMed  CAS  Google Scholar 

  35. Rinaldi N, Schwarz-Eywill M, Weis D et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann Rheum Dis 1997;56:45–51.

    Article  PubMed  CAS  Google Scholar 

  36. Firestein GS, Alvaro-Gracia JM, Maki R. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 1990;144:3347–3353.

    PubMed  CAS  Google Scholar 

  37. Neidhart M, Rethage J, Kuchen S et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic hypomethylation and influence on gene expression. Arthritis Rheum 2000;43:2634–2647.

    Article  PubMed  CAS  Google Scholar 

  38. Ali M, Veale DJ, Reece RJ et al. Overexpression of transcripts containing LINE-1 in the synovia of patients with rheumatoid arthritis. Ann Rheum Dis 2003;62:663–666.

    Article  PubMed  CAS  Google Scholar 

  39. Kuchen S, Seemayer CA, Rethage J et al. The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity 2004;37:57–65.

    Article  PubMed  CAS  Google Scholar 

  40. Karouzakis E, Gay RE, Michel BA et al. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009;60(12):3613–3622.

    Article  PubMed  CAS  Google Scholar 

  41. Xu GL, Bestor TH, Bourc’his D et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999;402:187–191.

    Article  PubMed  CAS  Google Scholar 

  42. Hmadcha A, Bedoya FJ, Sobrino F et al. Methylation-dependent gene silencing induced by interleukin 1 b via nitric oxide production. J Exp Med 1999;190:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  43. Wehbe H, Henson R, Meng F et al. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 2006;66:10517–10524.

    Article  PubMed  CAS  Google Scholar 

  44. Barreto G, Schäfer A, Marhold J et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007;445:671–675.

    Article  PubMed  CAS  Google Scholar 

  45. Salvador JM, Hollander MC, Nguyen AT et al. Mice lacking the p53-effector gene Gadd45a develops a lupus-like syndrome. Immunity 2002;16:499–508.

    Article  PubMed  CAS  Google Scholar 

  46. Pap T, Aupperle KR, Gay S et al. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum 2001;44:676–681.

    Article  PubMed  CAS  Google Scholar 

  47. Takami N, Osawa K, Miura Y et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 2006;54:779–787.

    Article  PubMed  CAS  Google Scholar 

  48. Yin X, Latif R, Tomer Y et al. Thyroid epigenetics: X chromosome inactivation in patients with autoimmune thyroid disease. Ann NY Acad Sci 2007;1110:193–200.

    Article  PubMed  CAS  Google Scholar 

  49. Hong B, Reeves P, Panning B. Identification of an autoimmune serum containing antibodies against the Barr body. Proc Natl Acad Sci USA 2001;98:8703–8708.

    Article  PubMed  CAS  Google Scholar 

  50. Xue C, Hasunuma T, Asahara H et al. Transcriptional regulation of the HOX4C gene by basic fibroblast growth factor on rheumatoid synovial fibroblasts. Arthritis Rheum 1997;40:1628–1635.

    Article  PubMed  CAS  Google Scholar 

  51. Nguyen NC, Hirose T, Nakazawa M et al. Expression of HOXD9 in fibroblast-like synoviocytes from rheumatoid arthritis patients. Int J Mol Med 2002;10:41–48.

    PubMed  Google Scholar 

  52. Brooks WH. X chromosome inactivation and autoimmunity. Clinic Rev Allergy Immunol 2009;in press.

    Google Scholar 

  53. Brix TH, Knudsen GP, Kristiansen M et al. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 2005;90:5949–5953.

    Article  PubMed  CAS  Google Scholar 

  54. Ozbalkan Z, Bagişlar S, Kiraz S et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 2005;52:1564–1570.

    Article  PubMed  CAS  Google Scholar 

  55. Furumitsu Y, Yukioka K, Yukioka M et al. Interleukin-1beta induces elevation of spermidine/spermine N1-acetyltransferase activity and an increase in the amount of putrescine in synovial adherent cells from patients with rheumatoid arthritis. J Rheumatol 2000;27:1352–1357.

    PubMed  CAS  Google Scholar 

  56. Andreas K, Lübke C, Häupl T et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 2008;10:R9.

    Article  PubMed  Google Scholar 

  57. Yukioka K, Yukioka K, Kojima A et al. Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol 1992;19:689–692.

    PubMed  CAS  Google Scholar 

  58. Furumitsu Y, Yukioka K, Kojima A et al. Levels of urinary polyamines in patients with rheumatoid arthritis. J Rheumatol 1993;20:1661–1665.

    PubMed  CAS  Google Scholar 

  59. Hasler P, Zouali M. Immune receptor signaling, aging and autoimmunity. Cell Immunol 2005;233(2):102–108.

    Article  PubMed  CAS  Google Scholar 

  60. Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity-catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 2003;5(5):225–234.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson TE. Recent results: biomarkers of aging. Exp Gerontol 2006;41(12):1243–1246.

    Article  PubMed  CAS  Google Scholar 

  62. Adler AS, Sinha S, Kawahara TL. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 2007;21(24):3244–3257.

    Article  PubMed  CAS  Google Scholar 

  63. Fraga MF, Ballestar E, Paz MF. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005;102(30):10604–10609.

    Article  PubMed  CAS  Google Scholar 

  64. Javierre BM, Fernandez AF, Richter J. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010;20(2):170–179.

    Article  PubMed  CAS  Google Scholar 

  65. Wilson VL, Smith RA, Ma S. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 1987;262(21):9948–9951.

    PubMed  CAS  Google Scholar 

  66. Maegawa S, Hinkal G, Kim HS. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010;20(3):332–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Karouzakis, E., Gay, R.E., Gay, S., Neidhart, M. (2011). Epigenetic Deregulation in Rheumatoid Arthritis. In: Ballestar, E. (eds) Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology, vol 711. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8216-2_10

Download citation

Publish with us

Policies and ethics