Skip to main content

Autophagy in the Retina: A Potential Role in Age-Related Macular Degeneration

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Age-related macular degeneration (AMD) is associated with multiple genetic and cellular defects which lead to a common endpoint, retinal degeneration. Aging and oxidative stress, significant features in the pathogenesis of AMD, are associated with an increase in damaged intracellular organelles and defective autophagy flux in a range of age-related and neurodegenerative diseases. Autophagy is a key process in the maintenance of cellular homeostasis that serves to remove dysfunctional organelles and proteins. Autophagy proteins are strongly expressed in the retina and there is now strong evidence that mitochondrial damage and defective autophagy are a feature of the aging retina and that this is further exacerbated in AMD. It is apparent that autophagy makes a significant contribution to lipofuscin accumulation in the RPE. Pharmacological manipulation of autophagy may offer an alternative therapeutic target in AMD.

Haripriya Vittal Rao and Sayak K. Mitter contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bergmann M, Schutt F, Holz FG et al (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18:562–564

    PubMed  CAS  Google Scholar 

  • Boulton M, McKechnie NM, Breda J et al (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30:82–89

    PubMed  CAS  Google Scholar 

  • Boulton ME (2009) Lipofuscin of the RPE. In: Fundus Autofluorescence (Lois M, Forrester J, eds), pp 14–26 Philadelphia: Lipincott; Williams and Wilkins

    Google Scholar 

  • Burke JM, Skumatz CM (1998) Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 39:1478–1486

    PubMed  CAS  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  PubMed  CAS  Google Scholar 

  • Dunn WA, Jr. (1990) Studies on the mechanisms of autophagy: formation of the autophagic ­vacuole. J Cell Biol 110:1923–1933

    Article  PubMed  Google Scholar 

  • Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:859–864

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki M, Yoshimori T (2010) Where do they come from? Insights into autophagosome ­formation. FEBS Lett 584:1296–1301

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Inomata H (1988) Lipofuscin granules in human photoreceptor cells. Invest Ophthalmol Vis Sci 29:671–679

    PubMed  CAS  Google Scholar 

  • Jarrett SG, Lewin AS, Boulton ME (2010) The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 44:179–190

    Article  PubMed  CAS  Google Scholar 

  • Kaarniranta K (2010) Autophagy--hot topic in AMD. Acta Ophthalmol 88:387–388

    Article  PubMed  Google Scholar 

  • Kaarniranta K, Salminen A, Eskelinen EL et al (2009) Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 8:128–139

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Uchiyama H, Takano S et al (2007) Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3:154–157

    PubMed  CAS  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Munemasa Y, Kwong JM et al (2008) Activation of autophagy in retinal ganglion cells. J Neurosci Res 86:2943–2951

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, McEwan DG, Novak I et al (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  PubMed  CAS  Google Scholar 

  • Knoferle J, Koch JC, Ostendorf T et al (2010) Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A 107:6064–6069

    Article  PubMed  Google Scholar 

  • Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    PubMed  CAS  Google Scholar 

  • Korolchuk VI, Mansilla A, Menzies FM et al (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33:517–527

    Article  PubMed  CAS  Google Scholar 

  • Krohne TU, Stratmann NK, Kopitz J et al (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90:465–471

    Article  PubMed  CAS  Google Scholar 

  • Kunchithapautham K, Rohrer B (2007) Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3:433–441

    PubMed  CAS  Google Scholar 

  • Kurz T, Karlsson M, Brunk UT et al (2009) ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 5:494–501

    Article  PubMed  CAS  Google Scholar 

  • Lieberthal W (2008) Macroautophagy: a mechanism for mediating cell death or for promoting cell survival? Kidney Int 74:555–557

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu W, Reigada D et al (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(−/−) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49:772–780

    Article  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  PubMed  CAS  Google Scholar 

  • Marino G, Madeo F, Kroemer G (2010) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol

    Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243

    Article  PubMed  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  PubMed  CAS  Google Scholar 

  • Reme C, Wirz-Justice A (1985) [Circadian rhythm, the retina and light]. Klin Monbl Augenheilkd 186:175–179

    Article  PubMed  CAS  Google Scholar 

  • Reme CE, Young RW (1977) The effects of hibernation on cone visual cells in the ground squirrel. Invest Ophthalmol Vis Sci 16:815–840

    PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Degterev A, David J et al (2010) Necroptosis, a novel form of caspase-­independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88:1569–1576

    PubMed  CAS  Google Scholar 

  • Ryhanen T, Hyttinen JM, Kopitz J et al (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment ­epithelial cells. J Cell Mol Med 13:3616–3631

    Article  PubMed  Google Scholar 

  • Seibenhener ML, Geetha T, Wooten MW (2007) Sequestosome 1/p62--more than just a scaffold. FEBS Lett 581:175–179

    Article  PubMed  CAS  Google Scholar 

  • Settembre C, Fraldi A, Jahreiss L et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  PubMed  CAS  Google Scholar 

  • Viiri J, Hyttinen JM, Ryhanen T et al (2010) p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells. Mol Vis 16:1399–1414

    PubMed  CAS  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M et al (2009a) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160

    Article  PubMed  Google Scholar 

  • Wang AL, Boulton ME, Dunn WA, Jr. et al (2009b) Using LC3 to monitor autophagy flux in the retinal pigment epithelium. Autophagy 5:1190–1193

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Lao U, Edgar BA (2009c) TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 186:703–711

    Article  PubMed  CAS  Google Scholar 

  • Wu BX, Darden AG, Laser M et al (2006) The rat Apg3p/Aut1p homolog is upregulated by ­ischemic preconditioning in the retina. Mol Vis 12:1292–1302

    PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2:1542–1552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grant EY019688 and AHAF grant M2009024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Boulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Mitter, S.K. et al. (2012). Autophagy in the Retina: A Potential Role in Age-Related Macular Degeneration. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_12

Download citation

Publish with us

Policies and ethics