Skip to main content

The Origin of the Bacterial Immune Response

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Bacteriophages are probably the oldest viruses, having appeared early during bacterial evolution. Therefore, bacteria and bacteriophages have a long history of co-evolution in which bacteria have developed multiple resistance mechanisms against bacteriophages. These mechanisms, that are very diverse and are in constant evolution, allow the survival of the bacteria. Bacteriophages have adapted to bacterial defense systems, devised strategies to evade these anti-phage mechanisms and restored their infective capacity. In this chapter, we review the bacterial strategies that hinder the phage infection as well as the counter-defense mechanisms developed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoskisson PA, Smith MCM. Hypervariation and phase variation in the bacteriophage ‘resistome’. Curr Opin Microbiol 2007; 10:396–400.

    Article  PubMed  CAS  Google Scholar 

  2. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanism. Nat Rev Microbiol 2010; 5:317–327.

    Article  Google Scholar 

  3. McAuliffe O, Ross RP, Fitzgerald GF. The new phage biology: from genomics to applications. In: McGrath S and van Sinderen D, eds. Bacteriophage Genetics and Molecular Biology. Norfolk: Caister Academic Press 2007: 1–42.

    Google Scholar 

  4. Ackermann H-W. Bacteriophage obserations and evolution. Res Microbiol 2003; 154:245–251.

    Article  PubMed  CAS  Google Scholar 

  5. Cuttman B, Raya R, Kutter E. Basic phage biology. In: Kutter E and Sulakvelidze A, eds. Bacteriophages. Biology and Applications. Boca Raton: CRC Press 2005: 29–66.

    Google Scholar 

  6. Casjens S. Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 2003; 49:277–300.

    Article  PubMed  CAS  Google Scholar 

  7. Liu M, Deora R, Doulatov SR et al. Reverse transcriptase-meditated tropism switching in Bordetella bacteriophage. Science 2002; 295:2091–2094.

    Article  PubMed  CAS  Google Scholar 

  8. Doulatov S, Hodes A, Dai L et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 2004; 431:473–481.

    Article  Google Scholar 

  9. Destoumieux-Garzond, Duquesne S, Peduzzi J et al. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem J 2005; 389:869–876.

    Article  Google Scholar 

  10. Vicent PA, Morero RD. The structure and biological aspects of peptide antibiotic microcin J25. Curr Med Chem 2009; 16:538–549.

    Article  Google Scholar 

  11. Riede I, Eschbach M-L. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett 1986; 205:241–245.

    Article  PubMed  CAS  Google Scholar 

  12. Bruttin A, Desiere F, Lucchini S et al. Characterization of the lysogeny DNA module from teteperate Streptococcus thermophilus bacteriophage φSfi21. Virology 1997; 233:136–148.

    Article  PubMed  CAS  Google Scholar 

  13. McGrath S, Fitzgerald GF, van Sinderen D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 2002; 43:509–520.

    Article  PubMed  CAS  Google Scholar 

  14. Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harb Perspect Biol 2010; 2:a000398.

    Article  Google Scholar 

  15. Sutherland IW, Hughes KA, Skillman LC et al. The interaction of phage and biofilms. FEMS Microbiol Lett 2004; 232:1–6.

    Article  PubMed  CAS  Google Scholar 

  16. Tait K, Sutherland IW. The efficacy of bacteriophages as a method of biofilm eradication. Biofouling 2002; 18:305–310.

    Article  Google Scholar 

  17. Richard AH, Gilbert P, High NJ et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends microbial 2003; 11:94–100.

    Article  Google Scholar 

  18. Ghosh D, Roy K, Williamson KE et al. Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl Environ Microbiol 2009; 75:7142–7152.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson GG. Restriction and modification systems. Annu Rev Genet 1991; 25:585–627.

    Article  PubMed  CAS  Google Scholar 

  20. Price C, Bickle TA. A possible role for DNA restriction in bacterial evolution. Microbiol Sci 1986; 3:296–299.

    PubMed  CAS  Google Scholar 

  21. Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Curr Opin Microbiol 2005; 8:466–472.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts RJ et al. A nomenclature for restriction enzymes, DNA methytransferases, homing endonucelases and their genes. Nucleic Acids Res 2003; 31:1805–1812.

    Article  PubMed  CAS  Google Scholar 

  23. Kruger DH, Barcak GJ, Smith HO. Abolition of DNA recognition site resistance to the restriction endonuclease EcoRII. Biomed Biochim Acta 1988; 47:K1–K5.

    PubMed  CAS  Google Scholar 

  24. Blair CL, Black LW. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol 2007; 366:768–778.

    Article  Google Scholar 

  25. Blair CL, Rifat D, Black LW. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol 2007; 366:779–789.

    Article  Google Scholar 

  26. Bedford D, Laity C, Buttner MJ. Two genes involved in the phase-variable phi C31 resistance mechanism of Streptomyces coelicolor A3(2). J Bacteriol 1995; 177:4681–4689.

    PubMed  CAS  Google Scholar 

  27. Sumby P, Smit MCM. Phase variation in the phage growth limitation system of Streptomices coelicor A3(2). J Bacteriol 2003; 4558–4563.

    Google Scholar 

  28. Studier FW, Novva NR. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol 1976; 19:136–145.

    PubMed  CAS  Google Scholar 

  29. Walkinshaw MD, Taylor P, Sturrock SS et al. Structure of OCR from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 2002; 9:18–94.

    Article  Google Scholar 

  30. Barrangou R, Fremaux C, Deveau H et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712.

    Article  PubMed  CAS  Google Scholar 

  31. Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008; 320:1047–1050.

    Article  PubMed  CAS  Google Scholar 

  32. Ishino Y, Shinagawa H, Makino K et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 1987; 169:5429–5433.

    PubMed  CAS  Google Scholar 

  33. Jansen R, Embden JD, Gaastra W et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43:1565–1575.

    Article  PubMed  CAS  Google Scholar 

  34. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11:181–190.

    Article  PubMed  CAS  Google Scholar 

  35. Bult CJ, White O, Olsen GJ et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996; 273:1058–1073.

    Article  PubMed  CAS  Google Scholar 

  36. Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007; 8:172.

    Article  PubMed  Google Scholar 

  37. Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 2007; 8:R61.

    Article  PubMed  Google Scholar 

  38. Mojica FJ, Díez-Villaseñor C, García-Martínez J et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60:174–182.

    Article  PubMed  CAS  Google Scholar 

  39. Lillestøl RK, Shah SA, Brügger K et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 2009; 72:259–272.

    Article  PubMed  Google Scholar 

  40. Hale C, Kleppe K, Terns RM et al. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 2008; 14:2572–2579.

    Article  PubMed  CAS  Google Scholar 

  41. Haft DH, Selengut J, Mongodin EF et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005; 1:e60.

    Article  PubMed  Google Scholar 

  42. Wiedenheft B, Zhou K, Jinek M et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 2009; 17:904–912.

    Article  PubMed  CAS  Google Scholar 

  43. Beloglazova N, Brown G, Zimmerman MD et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem 2008; 283:20361–20371.

    Article  PubMed  CAS  Google Scholar 

  44. Brouns SJ, Jore MM, Lundgren M et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321:960–964.

    Article  PubMed  CAS  Google Scholar 

  45. Carte J, Wang R, Li H et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 2008; 22:3489–3496.

    Article  PubMed  CAS  Google Scholar 

  46. Makarova KS, Grishin NV, Shabalina SA et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi and hypothetical mechanisms of action. Biol Direct 2006; 1:7.

    Article  PubMed  Google Scholar 

  47. Marraffini LA, Sontheimer EJ. Self versus nonself discrimination during CRISPR RNA-directed immunity. Nature 2010; 463:568–571.

    Article  PubMed  CAS  Google Scholar 

  48. Snyder L. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagent? Mol Microbiol 1995; 15:415–420.

    Article  PubMed  CAS  Google Scholar 

  49. Slavcev RA, Hayes S. Over-expression of rexA nullifies T4rII exclusion in Escherichia coli K(γ) lysogens. Can J Microbiol 2004; 50:133–136.

    Article  PubMed  CAS  Google Scholar 

  50. Amitsur M, Levitz R, Kaufmann G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 1987; 6:2499–2503.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos López-Larrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Martínez-Borra, J., González, S., López-Larrea, C. (2012). The Origin of the Bacterial Immune Response. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_1

Download citation

Publish with us

Policies and ethics