Skip to main content

Sensing Endoplasmic Reticulum Stress

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

This chapter provides an overview of our present understanding of mechanisms of sensing protein folding status and endoplasmic reticulum (ER) stress in eukaryotic cells. The ER folds and matures most secretory and transmembrane proteins. Mis- or unfolded proteins are sensed by specialized ER stress sensors, such as IRE1, PERK and ATF6, which initiate several cellular responses and signaling pathways to restore ER homeostasis. These intracellular signaling events are called the unfolded protein response (UPR). Here we focus on how ER stress and protein folding status in the ER are sensed by the ER stress sensors by summarizing results from recent structural, biochemical and genetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kozutsumi Y, Segal M, Normington K et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332:462–464.

    Article  PubMed  CAS  Google Scholar 

  2. Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993; 73:1197–1206.

    Article  PubMed  CAS  Google Scholar 

  3. Mori K, Ma W, Gething MJ et al. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 1993; 74:743–756.

    Article  PubMed  CAS  Google Scholar 

  4. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90:1031–1039.

    Article  PubMed  CAS  Google Scholar 

  5. Papa FR, Zhang C, Shokat K et al. Bypassing a kinase activity with an ATP-competitive drug. Science 2003; 302:1533–1537.

    Article  PubMed  CAS  Google Scholar 

  6. Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996; 87:391–404.

    Article  PubMed  CAS  Google Scholar 

  7. Sidrauski C, Cox JS, Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 1996; 87:405–413.

    Article  PubMed  CAS  Google Scholar 

  8. Travers KJ, Patil CK, Wodicka L et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101:249–258.

    Article  PubMed  CAS  Google Scholar 

  9. Kimata Y, Ishiwata-Kimata Y, Yamada S et al. Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins. Genes Cells 2006; 11:59–69.

    Article  PubMed  CAS  Google Scholar 

  10. Nishitoh H, Matsuzawa A, Tobiume K et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16:1345–1355.

    Article  PubMed  CAS  Google Scholar 

  11. Hu P, Han Z, Couvillon AD et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol Cell Biol 2006; 26:3071–3084.

    Article  PubMed  CAS  Google Scholar 

  12. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397:271–274.

    Article  PubMed  CAS  Google Scholar 

  13. Shi Y, An J, Liang J et al. Characterization of a mutant pancreatic eIF-2a kinase, PEK and colocalization with somatostatin in islet delta cells. J Biol Chem 1999; 274:5723–5730.

    Article  PubMed  CAS  Google Scholar 

  14. Shi Y, Vattem KM, Sood R et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 a-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18:7499–7509.

    PubMed  CAS  Google Scholar 

  15. Harding HP, Zhang Y, Zeng H et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11:619–633.

    Article  PubMed  CAS  Google Scholar 

  16. Harding HP, Novoa I, Zhang Y et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6:1099–1108.

    Article  PubMed  CAS  Google Scholar 

  17. Scheuner D, Song B, McEwen E et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001; 7:1165–1176.

    Article  PubMed  CAS  Google Scholar 

  18. Zinszner H, Kuroda M, Wang X et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12:982–995.

    Article  PubMed  CAS  Google Scholar 

  19. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 2002; 277:13045–13052.

    Article  PubMed  CAS  Google Scholar 

  20. Shen J, Chen X, Hendershot L et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3:99–111.

    Article  PubMed  CAS  Google Scholar 

  21. Haze K, Yoshida H, Yanagi H et al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10:3787–3799.

    PubMed  CAS  Google Scholar 

  22. Ye J, Rawson RB, Komuro R et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  23. Wu J, Rutkowski DT, Dubois M et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 2007; 13:351–364.

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto K, Sato T, Matsui T et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev Cell 2007; 13:365–376.

    Article  PubMed  CAS  Google Scholar 

  25. Nikawa J, Yamashita S. IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol Microbiol 1992; 6:1441–1446.

    Article  PubMed  CAS  Google Scholar 

  26. Schröder M, Clark R, Kaufman RJ. IRE1-and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol Microbiol 2003; 49:591–606.

    Article  PubMed  Google Scholar 

  27. Kohno K, Normington K, Sambrook J et al. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 1993; 13:877–890.

    PubMed  CAS  Google Scholar 

  28. Mori K, Sant A, Kohno K et al. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 1992; 11:2583–2593.

    PubMed  CAS  Google Scholar 

  29. Calfon M, Zeng H, Urano F et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415:92–96.

    Article  PubMed  CAS  Google Scholar 

  30. Lee K, Tirasophon W, Shen X et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF 6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16:452–466.

    Article  PubMed  CAS  Google Scholar 

  31. Yoshida H, Matsui T, Yamamoto A et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107:881–891.

    Article  PubMed  CAS  Google Scholar 

  32. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998; 12:1812–1824.

    Article  PubMed  CAS  Google Scholar 

  33. Wang XZ, Harding HP, Zhang Y et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 1998; 17:5708–5717.

    Article  PubMed  CAS  Google Scholar 

  34. Koizumi N, Martínez IM, Kimata Y et al. Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 2001; 127:949–962.

    Article  PubMed  CAS  Google Scholar 

  35. Noh SJ, Kwon CS, Chung WI. Characterization of two homologs of Ire1p, a kinase/endoribonuclease in yeast, in Arabidopsis thaliana. Biochim Biophys Acta 2002; 1575:130–134.

    PubMed  CAS  Google Scholar 

  36. Okushima Y, Koizumi N, Yamaguchi Y et al. Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa. Plant Cell Physiol 2002; 43:532–539.

    Article  PubMed  CAS  Google Scholar 

  37. Liu CY, Schröder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2000; 275:24881–24885.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang K, Wong HN, Song B et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 2005; 115:268–281.

    PubMed  CAS  Google Scholar 

  39. Bertolotti A, Wang X, Novoa I et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J Clin Invest 2001; 107:585–593.

    Article  PubMed  CAS  Google Scholar 

  40. Urano F, Bertolotti A, Ron D. IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 2000; 113:3697–3702.

    PubMed  CAS  Google Scholar 

  41. Bertolotti A, Zhang Y, Hendershot LM et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2:326–332.

    Article  PubMed  CAS  Google Scholar 

  42. Okamura K, Kimata Y, Higashio H et al. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 2000; 279:445–450.

    Article  PubMed  CAS  Google Scholar 

  43. Credle JJ, Finer-Moore JS, Papa FR et al. Inaugural article: on the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 2005; 102:18773–18784.

    Article  PubMed  CAS  Google Scholar 

  44. Dorner AJ, Wasley LC, Kaufman RJ. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 1989; 264:20602–20607.

    PubMed  CAS  Google Scholar 

  45. Watowich SS, Morimoto RI, Lamb RA. Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J Virol 1991; 65:3590–3597.

    PubMed  CAS  Google Scholar 

  46. Gething M-J, McCammon K, Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 1986; 46:939–950.

    Article  PubMed  CAS  Google Scholar 

  47. Ng DT, Randall RE, Lamb RA. Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J Cell Biol 1989; 109:3273–3289.

    Article  PubMed  CAS  Google Scholar 

  48. Ng DTW, Watowich SS, Lamb RA. Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene. Mol Biol Cell 1992; 3:143–155.

    PubMed  CAS  Google Scholar 

  49. Dorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 1992; 11:1563–1571.

    PubMed  CAS  Google Scholar 

  50. Llewellyn DH, Roderick HL. Overexpression of calreticulin fails to abolish its induction by perturbation of normal ER function. Biochem Cell Biol 1998; 76:875–880.

    Article  PubMed  CAS  Google Scholar 

  51. Dorner AJ, Wasley LC, Raney P et al. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem 1990; 265:22029–22034.

    PubMed  CAS  Google Scholar 

  52. Hardwick KG, Lewis MJ, Semenza J et al. ERD1, a yeast gene required for the retention of luminal endoplasmic reticulum proteins, affects glycoprotein processing in the Golgi apparatus. EMBO J 1990; 9:623–630.

    PubMed  CAS  Google Scholar 

  53. Beh CT, Rose MD. Two redundant systems maintain levels of resident proteins within the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 1995; 92:9820–9823.

    Article  PubMed  CAS  Google Scholar 

  54. Kimata Y, Kimata YI, Shimizu Y et al. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell 2003; 14:2559–2569.

    Article  PubMed  CAS  Google Scholar 

  55. Gething M-J. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 1999; 10:465–472.

    Article  PubMed  CAS  Google Scholar 

  56. Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000; 19:6440–6452.

    Article  PubMed  CAS  Google Scholar 

  57. Steel GJ, Fullerton DM, Tyson JR et al. Coordinated activation of Hsp70 chaperones. Science 2004; 303:98–101.

    Article  PubMed  CAS  Google Scholar 

  58. Rose MD, Misra LM, Vogel JP. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/ GRP78 gene. Cell 1989; 57:1211–1221.

    Article  PubMed  CAS  Google Scholar 

  59. Brodsky JL, Goeckeler J, Schekman R. BiP and Sec63p are required for both co-and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 1995; 92:9643–9646.

    Article  PubMed  CAS  Google Scholar 

  60. Back SH, Schröder M, Lee K et al. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 2005; 35:395–416.

    Article  PubMed  CAS  Google Scholar 

  61. Kimata Y, Ishiwata-Kimata Y, Ito T et al. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol 2007; 179:75–86.

    Article  PubMed  CAS  Google Scholar 

  62. Kimata Y, Oikawa D, Shimizu Y et al. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 2004; 167:445–456.

    Article  PubMed  CAS  Google Scholar 

  63. Oikawa D, Kimata Y, Kohno K. Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1. J Cell Sci 2007; 120:1681–1688.

    Article  PubMed  CAS  Google Scholar 

  64. Liu CY, Wong HN, Schauerte JA et al. The protein kinase/endoribonuclease IRE1a that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem 2002; 277:18346–18356.

    Article  PubMed  CAS  Google Scholar 

  65. Todd-Corlett A, Jones E, Seghers C et al. Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae. J Mol Biol 2007; 367:770–787.

    Article  PubMed  CAS  Google Scholar 

  66. Aragón T, van Anken E, Pincus D et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2008; 457:736–740.

    Article  PubMed  Google Scholar 

  67. Korennykh AV, Egea PF, Korostelev AA et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 2009; 457:687–693.

    Article  PubMed  CAS  Google Scholar 

  68. Zhou J, Liu CY, Back SH et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci USA 2006; 103:14343–14348.

    Article  PubMed  CAS  Google Scholar 

  69. Oikawa D, Kimata Y, Kohno K et al. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp Cell Res 2009.

    Google Scholar 

  70. Harding HP, Zhang Y, Bertolotti A et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5:897–904.

    Article  PubMed  CAS  Google Scholar 

  71. Fernandez J, Bode B, Koromilas A et al. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 2002; 277:11780–11787.

    Article  PubMed  CAS  Google Scholar 

  72. Cullinan SB, Zhang D, Hannink M et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 2003; 23:7198–7209.

    Article  PubMed  CAS  Google Scholar 

  73. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 2004; 279:20108–20117.

    Article  PubMed  CAS  Google Scholar 

  74. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2006; 38:317–332.

    Article  PubMed  CAS  Google Scholar 

  75. Cullinan SB, Gordan JD, Jin J et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004; 24:8477–8486.

    Article  PubMed  CAS  Google Scholar 

  76. Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 2004; 15:767–776.

    Article  PubMed  CAS  Google Scholar 

  77. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 2004; 164:341–346.

    Article  PubMed  CAS  Google Scholar 

  78. Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002; 277:18728–18735.

    Article  PubMed  CAS  Google Scholar 

  79. Ma Y, Hendershot LM. The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 2002; 7:222–229.

    Article  PubMed  CAS  Google Scholar 

  80. Liu CY, Xu Z, Kaufman RJ. Structure and intermolecular interactions of the luminal dimerization domain of human IRE1alpha. J Biol Chem 2003; 278:17680–17687.

    Article  PubMed  CAS  Google Scholar 

  81. Haze K, Okada T, Yoshida H et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 2001; 355:19–28.

    Article  PubMed  CAS  Google Scholar 

  82. Kondo S, Murakami T, Ogata M et al. The regulation of unfolded protein response by OASIS, a transmembrane bZIP transcription factor, in astrocytes. Mol Biol Cell 2004; 15:444a.

    Google Scholar 

  83. Kondo S, Murakami T, Tatsumi K et al. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 2005; 7:186–194.

    Article  PubMed  CAS  Google Scholar 

  84. Raggo C, Rapin N, Stirling J et al. Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol Cell Biol 2002; 22:5639–5649.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang K, Shen X, Wu J et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 2006; 124:587–599.

    Article  PubMed  CAS  Google Scholar 

  86. Bailey D, Barreca C, O’Hare P. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis. Traffic 2007; 8:1796–1814.

    Article  PubMed  CAS  Google Scholar 

  87. Stirling J, O’Hare P. CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell 2006; 17:413–426.

    Article  PubMed  CAS  Google Scholar 

  88. Kondo S, Saito A, Hino SI et al. BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of ER stress transducer. Mol Cell Biol 2007; 27:1716–1729.

    Article  PubMed  CAS  Google Scholar 

  89. Schindler AJ, Schekman R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc Natl Acad Sci USA 2009; 106:17775–17780.

    Article  PubMed  CAS  Google Scholar 

  90. Nadanaka S, Yoshida H, Kano F et al. Activation of mammalian unfolded protein response is compatible with the quality control system operating in the endoplasmic reticulum. Mol Biol Cell 2004; 15:2537–2548.

    Article  PubMed  CAS  Google Scholar 

  91. Yoshida H, Okada T, Haze K et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000; 20:6755–6767.

    Article  PubMed  CAS  Google Scholar 

  92. Wang Y, Shen J, Arenzana N et al. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 2000; 275:27013–27020.

    PubMed  CAS  Google Scholar 

  93. Shen JS, Snapp EL, Lippincott-Schwartz J et al. Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 2005; 25:921–932.

    Article  PubMed  Google Scholar 

  94. Hong M, Luo S, Baumeister P et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem 2004; 279:11354–11363.

    Article  PubMed  CAS  Google Scholar 

  95. Hong M, Li M, Mao C et al. Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. J Cell Biochem 2004; 92:723–732.

    Article  PubMed  CAS  Google Scholar 

  96. Nadanaka S, Okada T, Yoshida H et al. A role of disulfide bridges formed in the lumenal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 2007; 27:1027–1043.

    Article  PubMed  CAS  Google Scholar 

  97. Nadanaka S, Yoshida H, Mori K. Reduction of disulfide bridges in the lumenal domain of ATF6 in response to glucose starvation. Cell Struct Funct 2006; 31:127–134.

    Article  PubMed  CAS  Google Scholar 

  98. Ellgaard L, Ruddock LW. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 2005; 6:28–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Parmar, V.M., Schröder, M. (2012). Sensing Endoplasmic Reticulum Stress. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_10

Download citation

Publish with us

Policies and ethics