Skip to main content

Bacteria–Virus Coevolution

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

Phages, viruses of bacteria, are ubiquitous. Many phages require host cell death to successfully complete their life cycle, resulting in reciprocal evolution of bacterial resistance and phage infectivity (antagonistic coevolution). Such coevolution can have profound consequences at all levels of biological organisation. Here, we review genetic and ecological factors that contribute to determining coevolutionary dynamics between bacteria and phages. We also consider some of the consequences of bacteria-phage coevolution, such as determining rates of molecular evolution and structuring communities, and how these in turn feedback into driving coevolutionary dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  2. Salathe M, Soyer OS (2008) Parasites lead to evolution of robustness against gene loss in host signaling networks. Mol Syst Biol 4:202

    PubMed  Google Scholar 

  3. Ehrlich PR, Raven PH (1964) Butterflies and plants – a study in coevolution. Evolution 18:586–608

    Google Scholar 

  4. Buckling A, Hodgson DJ (2007) Short-term rates of parasite evolution predict the evolution of host diversity. J Evol Biol 20:1682–1688

    PubMed  CAS  Google Scholar 

  5. Hamilton WD (1980) Sex versus non-sex versus parasite. OIKOS 35:282–290

    Google Scholar 

  6. Pal C, Macia MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–1081

    PubMed  CAS  Google Scholar 

  7. Fellous S, Quillery E, Duncan AB, Kaltz O (2011) Parasitic infection reduces dispersal of ciliate host. Biol Lett 7:327–329

    PubMed  Google Scholar 

  8. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    PubMed  Google Scholar 

  9. Bull JJ (1994) Perspective – Virulence. Evolution 48:1423–1437

    Google Scholar 

  10. Koskella B, Lively CM (2007) Advice of the rose: experimental coevolution of a trematode parasite and its snail host. Evolution 61:152–159

    PubMed  Google Scholar 

  11. Laine AL (2006) Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc Roy Soc Lond B 273:267–273

    Google Scholar 

  12. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM (2011) Running with the Red Queen: Host-parasite coevolution selects for biparental sex. Science 333:216–218

    PubMed  CAS  Google Scholar 

  13. Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H (2010) Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci 107:7359–7364

    PubMed  CAS  Google Scholar 

  14. Thompson JN (2009) The coevolving web of life. Am Nat 173:125–140

    PubMed  Google Scholar 

  15. Thrall PH, Burdon JJ, Bever JD (2002) Local adaptation in the Linum marginale-Melampsora lini host- pathogen interaction. Evolution 56:1340–1351

    PubMed  Google Scholar 

  16. Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Google Scholar 

  17. Calendar RL (2005) The bacteriophages. Oxford University Press, Oxford

    Google Scholar 

  18. Chopin MC, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8:473–479

    PubMed  CAS  Google Scholar 

  19. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nature Rev Microbiol 8:317–327

    CAS  Google Scholar 

  20. Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472

    PubMed  CAS  Google Scholar 

  21. Mattick JS (2002) Type IV pili and twitching motility. Ann Rev Microbiol 56:289–314

    CAS  Google Scholar 

  22. Samuel ADT, Pitta TP, Ryu WS, Danese PN, Leung ECW, Berg HC (1999) Flagellar determinants of bacterial sensitivity to chi-phage. Proc Natl Acad Sci USA 96:9863–9866

    PubMed  CAS  Google Scholar 

  23. Icho T, Iino T (1978) Isolation and characterization of motile Escherichia coli mutants resistant to bacteriophage-chi. J Bacteriol 134:854–860

    PubMed  CAS  Google Scholar 

  24. Brockhurst MA, Buckling A, Rainey PB (2005) The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa. Proc Roy Soc Lond B 272:1385–1391

    Google Scholar 

  25. Lythgoe KA, Chao L (2003) Mechanisms of coexistence of a bacteria and a bacteriophage in a spatially homogeneous environment. Ecol Lett 6:326–334

    Google Scholar 

  26. Hashemolhosseini S, Holmes Z, Mutschler B, Henning U (1994) Alterations of receptor specificities of coliphages of the T2 family. J Mol Biol 240:105–110

    PubMed  CAS  Google Scholar 

  27. Qimron U, Marintcheva B, Tabor S, Richardson CC (2006) Genomewide screen of E. coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA 103:19039–19044

    PubMed  CAS  Google Scholar 

  28. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157: H7 in continuous culture. App Environ Microbiol 69:170–176

    CAS  Google Scholar 

  29. Buckling A, Rainey PB (2002a) Antagonistic coevolution between a bacterium and a bacteriophage. Proc Roy Soc Lond B 269:931–936

    Google Scholar 

  30. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278

    PubMed  CAS  Google Scholar 

  31. Scanlan PD, Hall AR, Lopez-Pascua LDC, Buckling A (2011) Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 20:981–989

    PubMed  Google Scholar 

  32. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage – a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Google Scholar 

  33. Forde SE, Thompson JN, Holt RD, Bohannan BJM (2008) Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution 62:1830–1839

    PubMed  Google Scholar 

  34. Hall AR, Scanlan PD, Morgan AD, Buckling A (2011a) Host-parasite coevolutionary arms races give way to flcutuating selection. Ecol Lett 14:635–642

    PubMed  Google Scholar 

  35. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS (2011) Statistical structure of host-phage interactions. Proc Natl Acad Sci USA 108:E288–E297

    PubMed  CAS  Google Scholar 

  36. Agrawal A, Lively CM (2002) Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol Ecol Res 4:79–90

    Google Scholar 

  37. Frank SA (1993) Specificity versus detectable polymorphism in host-parasite genetics. Proc Roy Soc Lond B 254:191–197

    CAS  Google Scholar 

  38. Gandon S, Buckling A, Decaestecker E, Day T (2008) Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol 21:1861–1866

    PubMed  CAS  Google Scholar 

  39. Morgan AD, Gandon S, Buckling A (2005) The effect of migration on local adaptation in a coevolving host-parasite system. Nature 437:253–256

    PubMed  CAS  Google Scholar 

  40. Fenton A, Antonovics J, Brockhurst MA (2009) Inverse-gene-for-gene infection genetics and coevolutionary dynamics. Am Nat 174:E230–E242

    PubMed  Google Scholar 

  41. Flor HH (1956) The complementary genetic system in flax and flax rust. Adv Genet 8:29–54

    Google Scholar 

  42. Sasaki A (2000) Host-parasite coevolution in a multilocus gene-for-gene system. Proc Roy Soc Lond B 267:2183–2188

    CAS  Google Scholar 

  43. Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604–608

    PubMed  CAS  Google Scholar 

  44. Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc Roy Soc Lond B 273:45–49

    Google Scholar 

  45. Lennon JT, Khatana SAM, Marston MF, Martiny JBH (2007) Is there a cost of virus resistance in marine cyanobacteria? ISME J 1:300–312

    PubMed  Google Scholar 

  46. Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution 62:1–11

    PubMed  Google Scholar 

  47. Frank SA (1992) Models of plant pathogen coevolution. Trends Genet 8:213–219

    PubMed  CAS  Google Scholar 

  48. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    PubMed  CAS  Google Scholar 

  49. Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8:134

    PubMed  Google Scholar 

  50. Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J App Microbiol 108:695–702

    CAS  Google Scholar 

  51. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Ann Rev Microbiol 54:289–340

    CAS  Google Scholar 

  52. Stern A, Sorek R (2011) The phage-host arms race: Shaping the evolution of microbes. Bioessays 33:43–51

    PubMed  CAS  Google Scholar 

  53. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407

    PubMed  Google Scholar 

  54. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    PubMed  CAS  Google Scholar 

  55. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    PubMed  CAS  Google Scholar 

  56. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas System and Its Role in Phage-Bacteria Interactions. Ann Rev Microbiol 64:475–493

    CAS  Google Scholar 

  57. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    PubMed  CAS  Google Scholar 

  58. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340

    PubMed  CAS  Google Scholar 

  59. Vale PF, Little TJ (2010) CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Roy Soc Lond Ser B 277:2097–2103

    CAS  Google Scholar 

  60. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-Encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    PubMed  CAS  Google Scholar 

  61. Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–1050

    PubMed  CAS  Google Scholar 

  62. Held NL, Whitaker RJ (2009) Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Env Microbiol 11:457–466

    CAS  Google Scholar 

  63. Korona R, Levin BR (1993) Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47:556–575

    Google Scholar 

  64. Levin BR (1988) Frequency-dependent selection in bacterial-populations. Phil Trans Roy Soc Lond B 319:459–472

    CAS  Google Scholar 

  65. Hamilton WD (1964) The genetical evolution of social behaviour, I & II. J Theor Biol 7:1–52

    PubMed  CAS  Google Scholar 

  66. Maynard-Smith J (1964) Group selection and kin selection. Nature 201:1145–1147

    Google Scholar 

  67. Andre JB, Day T (2005) The effect of disease life history on the evolutionary emergence of novel pathogens. Proc Roy Soc Lond B 272:1949–1956

    Google Scholar 

  68. Carval D, Ferriere R (2010) A unified model for the coevolution of resistance, tolerance, and virulence. Evolution 64:2988–3009

    PubMed  Google Scholar 

  69. Kashiwagi A, Yomo T (2011) Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Q beta and Escherichia coli. PLoS Genet 7:8

    Google Scholar 

  70. Koskella B, Thompson JN, Preston GM, Buckling A (2011) Local Biotic Environment Shapes the Spatial Scale of Bacteriophage Adaptation to Bacteria. Am Nat 177:440–451

    PubMed  Google Scholar 

  71. Agrawal AF, Lively CM (2003) Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics. Proc Roy Soc Lond B 270:323–334

    CAS  Google Scholar 

  72. Kerr B, Neuhauser C, Bohannan BJM, Dean AM (2006) Local migration promotes competitive restraint in a host-pathogen tragedy of the commons. Nature 442:75–78

    PubMed  CAS  Google Scholar 

  73. Boots M, Sasaki A (1999) Small worlds and the evolution of virulence: infection occurs locally and at a distance. Proc Roy Soc Lond B 266:1933–1938

    CAS  Google Scholar 

  74. Lion S, Boots M (2010) Are parasites prudent in space? Ecol Letts 13:1245–1255

    Google Scholar 

  75. Wild G, Gardner A, West SA (2009) Adaptation and the evolution of parasite virulence in a connected world. Nature 459:983–986

    PubMed  CAS  Google Scholar 

  76. Gallet R, Shao YP, Wang IN (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol 9:241

    PubMed  Google Scholar 

  77. Hochberg ME, van Baalen M (1998) Antagonistic coevolution over productivity gradients. Am Nat 152:620–634

    PubMed  CAS  Google Scholar 

  78. Lopez-Pascua LDC, Brockhurst MA, Buckling A (2010) Antagonistic coevolution across productivity gradients: an experimental test of the effects of dispersal. J Evol Biol 23:207–211

    PubMed  CAS  Google Scholar 

  79. Lopez-Pascua LDC, Buckling A (2008) Increasing productivity accelerates host-parasite coevolution. J Evol Biol 21:853–860

    PubMed  CAS  Google Scholar 

  80. Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host-parasitoid interaction. Nature 431:841–844

    PubMed  CAS  Google Scholar 

  81. Forde SE, Thompson JN, Bohannan BJM (2007) Gene flow reverses an adaptive cline in a coevolving host-parasitoid interaction. Am Nat 169:794–801

    PubMed  Google Scholar 

  82. Brockhurst MA, Morgan AD, Rainey PB, Buckling A (2003) Population mixing accelerates coevolution. Ecol Lett 6:975–979

    Google Scholar 

  83. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Ann Rev Ecol Evol Syst 35:435–466

    Google Scholar 

  84. Zhang QG, Buckling A (2011) Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol Lett 14:282–288

    PubMed  Google Scholar 

  85. Morgan AD, Brockhurst MA, Lopez-Pascua LDC, Pal C, Buckling A (2007) Differential impact of simultaneous migration on coevolving hosts and parasites. BMC Evol Biol 7:1

    PubMed  Google Scholar 

  86. Vogwill T, Fenton A, Buckling A, Hochberg ME, Brockhurst MA (2009b) Source populations act as coevolutionary pacemakers in experimental selection mosacis containing hotspots and coldspots. Am Nat 173:E171–E176

    PubMed  Google Scholar 

  87. Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I (1996) Local adaptation and gene for gene coevolution in a metapopulation model. Proc Roy Soc Lond B 263:1003–1009

    Google Scholar 

  88. Vogwill T, Fenton A, Brockhurst MA (2008) The impact of parasite dispersal on antagonistic host-parasite coevolution. J Evol Biol 21:1252–1258

    PubMed  CAS  Google Scholar 

  89. Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Env Microbiol 10:200–207

    CAS  Google Scholar 

  90. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Google Scholar 

  91. Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A (2009) Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833–833

    PubMed  CAS  Google Scholar 

  92. Lenormand T (2002) Gene flow and the limits to natural selection. TREE 17:183–189

    Google Scholar 

  93. Lopez-Pascua LDC, Gandon S, Buckling A (2012) Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol 25:187–195

    PubMed  CAS  Google Scholar 

  94. Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E, Elion J (1997) Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833–1834

    PubMed  CAS  Google Scholar 

  95. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253

    PubMed  CAS  Google Scholar 

  96. Giraud A, Radman M, Matic I, Taddei F (2001) The rise and fall of mutator bacteria. Curr Opin Microbiol 4:582–585

    PubMed  CAS  Google Scholar 

  97. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B (1997) Role of mutator alleles in adaptive evolution. Nature 387:700–702

    PubMed  CAS  Google Scholar 

  98. Morgan AD, Bonsall MB, Buckling A (2010) Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64:2980–2987

    PubMed  Google Scholar 

  99. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    PubMed  CAS  Google Scholar 

  100. Buckling A, Rainey PB (2002b) The role of parasites in sympatric and allopatric diversification. Nature 420:496–499

    PubMed  CAS  Google Scholar 

  101. Vogwill T, Fenton A, Brockhurst MA (2011) Coevolving parasites enhance the diversity-decreasing effect of dispersal. Biol Lett 7:578–580

    PubMed  Google Scholar 

  102. Brockhurst MA, Rainey PB, Buckling A (2004) The effect of parasites and spatial heterogeneity on the evolution of host diversity. Proc Roy Soc Lond B 271:107–111

    Google Scholar 

  103. Benmayor R, Buckling A, Bonsall MB, Brockhurst MA, Hodgson DJ (2008) The interactive effects of parasitesf disturbance, and productivity on experimental adaptive radiations. Evolution 62:467–477

    PubMed  Google Scholar 

  104. Morgan AD, Buckling A (2004) Parasites mediate the relationship between diversity and disturbance. Ecol Lett 7:1029–1034

    Google Scholar 

  105. Buckling A, Wills MA, Colegrave N (2003) Adaptation limits diversification of experimental bacterial populations. Science 302:2107–2109

    PubMed  CAS  Google Scholar 

  106. Benmayor R, Hodgson DJ, Perron GG, Buckling A (2009) Host mixing and disease emergence. Curr Biol 19:764–767

    PubMed  CAS  Google Scholar 

  107. Hall AR, Scanlan PD, Buckling A (2011b) Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat 177:44–53

    PubMed  Google Scholar 

  108. Vogwill T, Fenton A, Brockhurst MA (2009a) Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations. Ecol Lett 12:1194–1200

    PubMed  Google Scholar 

  109. Lennon JT, Martiny JBH (2008) Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol Lett 11:1178–1188

    PubMed  Google Scholar 

  110. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424:303–306

    PubMed  CAS  Google Scholar 

  111. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    PubMed  CAS  Google Scholar 

  112. Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Google Scholar 

  113. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009). Reconstruction of biochemical networks in microorganisms. Nature Rev Microbiol 7:129–43

    CAS  Google Scholar 

  114. MacLean RC, Hall AR, Perron GG, Buckling A (2010) The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nature Rev Genet 11:405–14

    PubMed  CAS  Google Scholar 

  115. Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336

    PubMed  Google Scholar 

  116. Buckling A, Maclean RC, Brockhurst MA, Colegrave N (2009) The Beagle in a bottle. Nature 457:824–829

    PubMed  CAS  Google Scholar 

  117. Morgan AD, Maclean RC, Buckling A (2009) Effects of antagonistic coevolution on parasite-mediated host coexistence. J Evol Biol 22:287–292

    PubMed  CAS  Google Scholar 

  118. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. TREE 22:250–257

    PubMed  Google Scholar 

  119. Nuismer SL, Thompson JN (2006) Coevolutionary alternation in antagonistic interactions. Evolution 60:2207–2217

    PubMed  Google Scholar 

  120. Palumbi SR (2001) Evolution – Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    PubMed  CAS  Google Scholar 

  121. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nature Rev Microbiol 2:166–173

    CAS  Google Scholar 

  122. Maura D, Debarbieux L (2011) Bacteriophages as twenty-first century antibacterial tools for food and medicine. App Microbiol Biotech 90:851–859

    CAS  Google Scholar 

  123. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    PubMed  CAS  Google Scholar 

  124. Friedel CC, Haas J (2011) Virus-host interactomes and global models of virus-infected cells. Trends Microbiol 19:501–508

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues past and present who we have worked with on these topics. We gratefully acknowledge support from NERC (UK), European Research Council, Wellcome Trust, Royal Society and Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus Buckling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Buckling, A., Brockhurst, M. (2012). Bacteria–Virus Coevolution. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_16

Download citation

Publish with us

Policies and ethics