Skip to main content

The Analysis of Free Radicals, Lipid Peroxides, Antioxidant Enzymes and Compounds Related to Oxidative Stress as Applied to the Clinical Chemistry Laboratory

  • Chapter
Book cover Free Radicals in Diagnostic Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 366))

Abstract

It is almost impossible to read through a medical journal, or even the newspaper and not encounter an article that deals with oxidative stress, or with antioxidant involvement in a disease process. Indeed, free radicals, their reactive intermediates, low molecular weight aldehyde byproducts derived from lipid peroxidation and antioxidant status are important measurements we can utilize to provide a more comprehensive understanding of pathologic mechanisms (1–8). All subcellular organelles normally generate superoxide (O2·-), hydrogen peroxide and a variety of free radicals ie; hydroyl (OH·), perhydroxy(HO2·), carbon and nitrogen centered. It has been estimated that 10 billion of these radicals are produced daily via autoxidation and metabolic reactions. In cellular injury, increased amounts of O2·- radicals and peroxides can arise from the mitochondrial electron-transport system during hypoxia and following reperfusion, they can arise primarily through the activation of NADPH oxidase in phagocyte plasma membranes or from platelet derived endoperoxides of arachidonic acid, from the conversion of xanthine dehydrogenase to xanthine oxidase in tissue and from the generation of OH· radicals in iron-catalyzed reactions involving hemoproteins (9). The most current review by Chaudiere covers theoretical and factual site-specific formation and damage (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Armstrong, R. Sohol, R. Cutler and T. Slater. “Free Radicals in Molecular Biology, Aging and Disease,” vol. 27, Raven Press, NY, pages 1–416 (1984).

    Google Scholar 

  2. C. Hooper, Free Radicals: Research on biochemical bad boys comes of age, J NIH Res 1:101–106 (1989).

    Google Scholar 

  3. B. Halliwell, J. Gutteridge and C. Cross, Free radicals, antioxidants and human disease: where are we now, J. Lab. Clin. Med. 119:598–620 (1992).

    PubMed  CAS  Google Scholar 

  4. K. Cheeseman, Tissue injury by free radicals, Toxicol. Industrial Health 9:39–51 (1993).

    CAS  Google Scholar 

  5. K. Yagi. Role of lipid peroxides in aging and age-related diseases, in ““New Trends in Biological Chemistry,” T. Ozawa, ed., Japan Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin, pages 207–242 (1991).

    Google Scholar 

  6. E. Stadtman, Protein oxidation and aging, Science 257:1220–1224 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. E. Harris, Regulation of antioxidant enzymes, The FASEB Journal 6:2675–2683 (1992).

    CAS  Google Scholar 

  8. A. Baouali, H. Aube, V. Maupoil, et al, Plasma lipid peroxidation in critically ill patients: importance of mechanical ventilation, Free Rad. Biol. Med. 16: 223–227 (1994).

    Article  PubMed  Google Scholar 

  9. J. McCord and B. Omar, Sources of free radicals, Toxicol. Industrial Health 9: 23–37 (1993).

    CAS  Google Scholar 

  10. J. Chaudiere, Some chemical and biochemical constraints of oxidative stress in living cells, in “Free Radical Damage and its Control,” C. Rice-Evans and R. Burden eds., New Comprehensive Biochemistry, Elsevier Biomedical Press, Amsterdam, pages 24–64 (1994).

    Google Scholar 

  11. S. Liochev and J. Fridovich, The role of O2•— in the production of HO in vitro and in vivo, Free Rad. Biol. Med. 16: 29–33 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. K. Yagi, N. Ishida, S. Komura, et al, Generation of hydroxyl radical from linoleic acid hydroperoxide in the presence of epinephrine and iron, Biochem. Biophys. Res. Comm. 183:945–951 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. M. Stampfer, C. Hennekens, J. Manson, et al, Vitamin E consumption and the risk of coronary disease in women, NEJM 328:1444–1449 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. E. Rimm, M. Stampfer, A. Ascherio, et al, Vitamin E consumption and the risk of coronary disease in men, NEJM 328:1450–1456 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. T. Emerson, Unique features of albumin: a brief review, Crit. Care Med. 17:690–694 (1989).

    Article  PubMed  Google Scholar 

  16. R. Pirisino, P. DiSimplicio, G. Ignesti, et al, Sulfhydryl group and peroxidase-like activity of albumin as scavenger of organic peroxides, Pharmacol. Res. Commun. 20:545–552 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. T. Suematsu, T. Kamada, H. Abe, et al, Serum lipoperoxide level in patients suffering from liver disease, Clin. Chem. Acta. 79:267–270 (1977).

    Article  CAS  Google Scholar 

  18. K. Satoh, Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetrie method, Clin. Chem. Acta. 90:37–43 (1987).

    Google Scholar 

  19. M. Santos, J. Vales, J. Angar, et al, Determination of plasma malondialdehyde-like material and its clinical application in stroke patients, J. Clin. Pathol. 33:973–976 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. M. Maseki, J. Nishigaki, M. Hagihara, et al Lipid peroxide levels and lipid content of serum lipoprotein fractions of pregnant subjects with or without pre-eclampsia, Clin. Chem. Acta. 115:155–161 (1981).

    Article  CAS  Google Scholar 

  21. J. Anzar, M. Santos, J. Valles, et al, Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction, J. Clin. Pathol. 36:312–715 (1983).

    Article  Google Scholar 

  22. S. Wong, J. Knight, S. Hopfer, et al, Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct, Clin. Chem. 33:214–220 (1987).

    PubMed  CAS  Google Scholar 

  23. J. Knight, E. Smith, V. Kinder, et al, Reference intervals for plasma lipoperoxides: Age, sex and specimen-related variations, Clin. Chem. 33:2289–2291 (1987).

    PubMed  CAS  Google Scholar 

  24. J. Knight, R. Pieper, S. Smith et al, Increased urinary lipoperoxides in drug abuses, Ann. Clin. Lab. Sci. 18:374–377 (1988).

    PubMed  CAS  Google Scholar 

  25. J. Knight, R. Pieper and L. McClellan, Specificity of the thiobarbituric acid reaction: Its use in studies of lipid peroxidation, Clin. Chem. 34:2433–2438 (1988).

    PubMed  CAS  Google Scholar 

  26. J. Knight, A. Cheung, R. Pieper et al, Increased urinary lipoperoxide levels in renal transplant patients, Ann. Clin. Lab. Sci., 19:238–241 (1989).

    PubMed  CAS  Google Scholar 

  27. E. Zarling and M. Clapper, Technique for gas-chromatographic measurement of volatile alkanes from single-breath samples, Clin. Chem. 33:140–141 (1987).

    PubMed  CAS  Google Scholar 

  28. J. Knight,. McClellan and J. Stabell, Cerebrospinal fluid lipoperoxides quantified by liquid chromatography and determination of reference values, Clin. Chem. 36:139–142 (1990).

    PubMed  CAS  Google Scholar 

  29. F. van Kuijk, D. Thomas, J. Konopelski et al, Transesterification of phospholipids or triglycerides to fatty acid benzyl esters with simultaneous methylation of free fatty acids for gas-liquid chromatographic analysis, J. Lipid Res, 27:452–456 (1986).

    PubMed  Google Scholar 

  30. M. Selley, M. Bartlett, J. McGuiness, et al, Determination of the lipid peroxidation product trans-4-hydroxy-2-nonenal in biological samples by high performance liquid chromatography and combined capillary column gas chromatography-negative-ion chemical ionization mass spectroscopy, J. Chromatogr., 488:329–340 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. V. Sharov, V. Kazamanov, and Y. Vladimirov, Selective sensitization of chemiluminescence resulting from lipid and oxygen radical reactions, Free Rad. Biol. Med 7:237–242 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. I. Minkenberg and E. Ferber, Lucigenin-dependent chemiluminescence as a new assay for NADPH oxidase activity in particulate practices of human polymorphonuclear leukocytes, J. Immunol. Meth., 71:61–68 (1984).

    Article  CAS  Google Scholar 

  33. M. Tosi and A. Hamedeni, A rapid, specific assay for superoxide release from phagocytes in small volumes of whole blood, Am. J. Clin. Pathol., 97:566–573 (1992).

    PubMed  CAS  Google Scholar 

  34. M. Nakano, Determination of superoxide radical and singlet oxygen based on chemiluminescence of Luciferin analogs, in “Oxygen Radicals in Biological Systems”, Methods of Enzymology, vol. 186, L. Packer, and A. Glacer, eds., Academic Press, San Diego, CA, pages 585–591 (1990).

    Google Scholar 

  35. T. Miyazawa, Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay, Free Rad. Biol. Med. 7:209–217 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. T. Nicotera, K. Thusa, and P. Dandona, Elevated production of active oxygen in Bloomus syndrome cell lines, Cancer Res. 53:5104–5107 (1993).

    PubMed  CAS  Google Scholar 

  37. T. Mizawa, K. Fujimoto and S. Oikawa, Determination of lipid hydroperoxides in low density lipoprotein from human plasma using high performance liquid chromatography with chemiluminescence detection, Biomed. Chromatogr. 4:131–134 (1990).

    Article  Google Scholar 

  38. W. Davis, B. Mohammad, D. Mays, et al, Hydroxylation of salicylate by activated neutrophils, Biochem. Pharmacol. 38:4013–4019 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. B. Halliwell, H. Kaur and M. Ingelman-Sundberg, Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note, Free Rad. Biol. Med. 10:439–441 (1991).

    Article  PubMed  CAS  Google Scholar 

  40. A. Ghiselli, O. Laurenti, G. DeMattia, et al, Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients, Free Rad. Biol. Med. 13:621–626 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. F. Corongiu and A. Milia, An improved and simple method for determining diene conjugation in autoxidized polyunsaturated fatty acids, Chem.-Biol. Interactions 44:289–297 (1983).

    Article  CAS  Google Scholar 

  42. D. Armstrong, T. Hiramitsu, J. Gutteridge, et al, Studies on experimentally induced retinal degeneration, I. Effect of lipid peroxides on electroretinographic activity in the albino rabbit, Exp. Eye Res. 35:157–171 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. G. Metz, M. Gassull, A. Leeds, et al, A simple method of measuring hydrogen in carbohydrate malabsorption by end-expiratory sampling, Clin. Sci. Mol. Med. 50:237–240 (1976).

    PubMed  CAS  Google Scholar 

  44. K. Yagi, A simple fluorometric assay for lipoperoxide in blood plasma, Biochem. Med. 15:212–216 (1976).

    Article  PubMed  CAS  Google Scholar 

  45. D. Janero, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Rad. Biol. Med. 9:515–540 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. A. Valenzuela, The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress, Life Sci. 48:301–309 (1991).

    Article  PubMed  CAS  Google Scholar 

  47. D. Armstrong, N. Abdella, A. Salman, et al, Relationship of lipid peroxides to diabetic complications: comparison with conventional laboratory tests, J. Diab. Comp. 6:116–122 (1992).

    Article  CAS  Google Scholar 

  48. D. Armstrong and F. Al-Awadi, Lipid peroxidation and retinopathy in streptozotorin-induced diabetes, Free Rad. Biol. Med. 11:433–436 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. M. Conti, P. Morand, P. Levillain, et al, Improved fluorometric determination of malondialdehyde, Clin. Chem. 37:1273–1275 (1991).

    PubMed  CAS  Google Scholar 

  50. H. Ikatsu, T. Nakajima, N. Murayama, et al, Flow-injection analysis for malondialdehyde in plasma with the thiobarbituric acid reaction, Clin. Chem. 38:2061–2065 (1992).

    PubMed  CAS  Google Scholar 

  51. A. Miiki, N. Kayahara, Y. Yokote, et al, A simple assay for lipid peroxides using a leucomethylene blue derivative, Clin. Chem. 34:1228 (1988).

    Google Scholar 

  52. A. Yalcin, G. Haklar and K. Emerk, Simple colorimetric method for determination of peroxide, Clin. Chem. 39:2534–2535 (1993).

    PubMed  CAS  Google Scholar 

  53. C. Smith, M. Mitchinson and B. Hallwell, Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test, Free Radic. Res. Comm. 19:51–57 (1993).

    Article  Google Scholar 

  54. H. Draper, E. Squires, H. Mahmoodi, et al, A comparison evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials, Free Rad. Biol. Med. 15:353–363 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. A. Holley, M. Walker, K. Cheeseman, et al, Measurement of n-alkanals and hydroxyalkanals in biological samples, Free Rad. Biol. Med. 15:281–289 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. V. Bowry, K. Stanley and R. Stocker, High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors, Proc. Natl. Acad. Sci. 89:10316–10320 (1992).

    Article  PubMed  CAS  Google Scholar 

  57. J. Salonen, S. Yla-Herttula, R. Yamamota, et al, Autoantibody against oxidized LDL and progression of carotid atherosclerosis, The Lancet 339:883–887 (1992).

    Article  CAS  Google Scholar 

  58. H. Hoff, J. O’Neil, G. Chisolm, et al, Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages, Arteriosclerosis 9:538–549 (1989).

    Article  PubMed  CAS  Google Scholar 

  59. B. Kalyanaraman, W. Antholine and S. Parthasarathy, Oxidation of lowdensity lipoprotein by Cu2+ and lipoxygenase: an electron spin resonance study, Biochem. Biophys. Acta 1035:286–292 (1990).

    Article  PubMed  CAS  Google Scholar 

  60. H. Kleinveld, H. Hak-Lemmers, A. Stalenhoef, et al, Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein, Clin. Chem. 38:2066–2072 (1992).

    PubMed  CAS  Google Scholar 

  61. W. Palinski, S. Yla-Herttuala, M. Rosenfeld, et al, Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein, Arteriosclerosis 10:325–335 (1990).

    Article  PubMed  CAS  Google Scholar 

  62. B. Frei, Y. Yamamota, D. Niclas, et al, Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human plasma, Anal. Biochem. 175:120–130 (1988).

    CAS  Google Scholar 

  63. H. Kleinveld, A. Naker, A. Stalenhoef, et al, Oxidation resistance, oxidation rate and extent of oxidation of human low-density lipoprotein depend on the ratio of oleic acid content to linoleic acid content: studies in vitamin E deficient subjects, Free Rad. Biol. Med. 15:273–280 (1993).

    Article  PubMed  CAS  Google Scholar 

  64. J. Teare, N. Punchard, J. Powell, et al, Automated spectrophotometric method for determining oxidized and reduced glutathione in liver, Clin. Chem. 39:686–689 (1993).

    PubMed  CAS  Google Scholar 

  65. P. Hissin and R. Hilf, A fluorometric method for determination of oxidized and reduced glutathione in tissues, Anal. Biochem. 74:214–226 (1976).

    Article  PubMed  CAS  Google Scholar 

  66. J. Richie and C. Lang, The determination of glutathione, cyst (e) ine and other thiols and disulfides in biological samples using high-performance liquid chromatography with dual electrochemical detection, Anal. Biochem. 163:9–15 (1987).

    Article  PubMed  CAS  Google Scholar 

  67. J. Gutteridge, D. Rowley, E. Griffiths, et al, Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic hemochromatosis, Clinical Science 68:463–467 (1985).

    PubMed  CAS  Google Scholar 

  68. O. Aruma, A. Bomford, R. Poison, et al, Non-tranfonon-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy, Blood 72:1416–1419 (1988).

    Google Scholar 

  69. B. Halliwell, O. Aruma, G. Maefi, et al, Bleomycin-detectable iron in serum from leukaemic patients before and after chemotherapy, FEBS Letters 241:202–204 (1988).

    Article  PubMed  CAS  Google Scholar 

  70. M. Grootveld, J Bell, b. Halliwell, et al, Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy, J. Biol. Chem. 264:4417–4422 (1989).

    PubMed  CAS  Google Scholar 

  71. M. Richard, J. Arnaud, C. Jurkovitz, et al, Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure, Nephron 57:10–15 (1991).

    Article  PubMed  CAS  Google Scholar 

  72. A. Alfthan, A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry, Anal. Chem. Acta 165:187–194 (1984).

    Article  CAS  Google Scholar 

  73. Z. Zaman, P. Fielden and P. Frost, Simultaneous determination of Vitamin A and E and carotenoids in plasma by reversed-phase HPLC in elderly and younger subjects, Clin. Chem. 39:2229–2234 (1993).

    PubMed  CAS  Google Scholar 

  74. N. Miller, J. Shatti and C. Rice-Evans, Plasma vitamin C analysis by the ferrozine method using the Cobas Mira analyzer, (personal communication).

    Google Scholar 

  75. S. Umeki, M. Sumi, Y. Niki, et al, Concentrations of superoxide dismutase and superoxide anion in blood of patients with respiratory infection and compromised immune systems, Clin. Chem. 33:2230–2233 (1987).

    PubMed  CAS  Google Scholar 

  76. J. Crapo, T. Oury, C. Rahouille, et al, Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells, Proc. Natl. Acad. Sci. 89:10405–10409 (1992).

    Article  PubMed  CAS  Google Scholar 

  77. D. Newsome, E. Dohard, M. Liles, et al, Human retinal pigment epithelium contains two distinct species of superoxide dismutase, Invest. Ophthalmol. Vis. Sci. 31:2508–2513 (1990).

    PubMed  CAS  Google Scholar 

  78. N. Miller, C. Rice-Evans, M. Davies, et al, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci. 84:407–412 (1993).

    PubMed  CAS  Google Scholar 

  79. G. Cao, H. Alessio and R. Cutter, Oxygen-radical absorbance capacity assays for antioxidants, Free Rad. Biol. Med. 14:303–311 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. M. Arshad, S. Bhadra, R. Cohen, et al, Plasma lipoprotein peroxidation potential: a test to evaluate individual susceptibility to peroxidation, Clin. Chem. 37:1756–1758 (1991).

    PubMed  CAS  Google Scholar 

  81. M.-J. Richard, B. Portal, J. Meo, et al, Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid, Clin. Chem. 38:704–709 (1992).

    PubMed  CAS  Google Scholar 

  82. C. Nebot, M. Moutet, P. Huet, et al, Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol, Anal. Biochem. 214:442–451 (1993).

    Article  PubMed  CAS  Google Scholar 

  83. P.E. Jennings, N.A. Scott, A.R. Saniabadi, et al, Effects of gliclazide on platelet reactivity and free radicals in type II diabetic patients: clinical assessment, Metabolism 41:36–39 (1992)

    Article  PubMed  CAS  Google Scholar 

  84. B. Halliwell and J. Gutteridge, The antioxidants of human extracellular fluids, Arch. Biochem. Biophys. 280:1–8 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstrong, D., Browne, R. (1994). The Analysis of Free Radicals, Lipid Peroxides, Antioxidant Enzymes and Compounds Related to Oxidative Stress as Applied to the Clinical Chemistry Laboratory. In: Armstrong, D. (eds) Free Radicals in Diagnostic Medicine. Advances in Experimental Medicine and Biology, vol 366. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1833-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1833-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5742-1

  • Online ISBN: 978-1-4615-1833-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics