Skip to main content

Abstract

We have proposed a unifying model for the action of alloxan and streptozotocin on pancreatic β-cells.1-5 Central to the model are breaks in the nuclear DNA of β-cells resulting from either an accumulation of oxygen radicals or alkylation of DNA. These breaks induce DNA repair involving the activation of poly(ADP-ribose) synthetase, which uses cellular NAD as a substrate; as a result, intra-cellular levels of NAD fall dramatically. The fall in cellular NAD inhibits the cellular activities including insulin synthesis, thus the β-cell ultimately dies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Okamoto, Regulation of proinsulin synthesis on pancreatic islets and a new aspect to insulin-dependent diabetes, Mol Cell Biochem. 37:43–61 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. H. Okamoto, Molecular basis of experimental diabetes: degeneration, oncogenesis and regeneration of pancreatic β-cell of islets of Langerhans, BioEssays. 2:15–21 (1985).

    Article  CAS  Google Scholar 

  3. H. Okamoto, Rig and reg novel genes activated in insulinomas and in regenerating islets, in: “Diabetes 1988-Proceedings of the 13th Congress of the International Diabetes Federation, Sydney, 20-25 November 1988”, R.G. Larkins, P.Z. Zimmet, and D.J. Chishlm, eds., Excerpta Medica, Amsterdam (1989).

    Google Scholar 

  4. H. Okamoto, The molecular basis of experimental diabetes, in: “Molecular Biology of the Islets of Langerhans”, H. Okamoto, ed., Cambridge University Press, Cambridge, (1990).

    Chapter  Google Scholar 

  5. H. Okamoto, H. Yamamoto, S. Takasawa, C. Inoue, K. Terazono, K. Shiga, and M. Kitagawa, Molecular mechanism of degeneration, oncogenesis and regeneration of pancreatic β-cell of islets of Langerhans, in: “Frontiers in Diabetes Research: Lessons from Animal Diabetes II”, E. Shafrir and A.E. Renold, eds., John Libbey & Company Ltd., London (1988).

    Google Scholar 

  6. J. von Mering, and O. Minkowski, Diabetes mellitus nach Pankreasexstripation, Arch Exp Pathol Pharmakol. 26:371–87 (1890).

    Article  Google Scholar 

  7. Y. Yonemura, T. Takashima, K. Miwa, I. Miyazaki, H. Yamamoto, and H. Okamoto, Amelioration of diabetes mellitus in partially depancreatized rats by poly (ADP-ribose) synthetase inhibitors: evidence of islets β-cell regeneration, Diabetes. 33:401–04 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Matsuda, Regeneration of β cells in partially depancreatized rats poly (ADP-ribose) synthetase inhibitor, Suizo (J Jpn Panc Soc.) 2:450–59 (1987).

    CAS  Google Scholar 

  9. Y. Yonemura, T. Takashima, T. Hashimoto, I. Miyazaki, H. Yamamoto, and H. Okamoto, β-cell replication in regenerating islets of 90% depancreatized poly (ADP-ribose) synthetase inhibitor-treated rats, Tonyobyo (J Jpn Diabetes Soc.) 28:363 (1985).

    Google Scholar 

  10. K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, and H. Okamoto, A novel gene activated in regenerating islets, J Bioi Chem. 263:2111–14 (1988).

    CAS  Google Scholar 

  11. K. Terazono, T. Watanabe, and Y. Yonemura, A novel gene, reg, expressed in regenerating islets, in: “Molecular Biology of the Islets of Langerhans”, H. Okamoto, ed., Cambridge University Press, Cambridge (1990).

    Google Scholar 

  12. T. Itoh, H. Tsuzuki, T. Katoh, H. Teraoka, K. Matsumoto, N. Yoshida, K. Terazono, T. Watanabe, H. Yonekura, H. Yamamoto, and H. Okamoto, Isolation and characterization of human reg protein produced in Saccharomyces cervisiae, PEBS Lett. 272:85–88 (1990).

    CAS  Google Scholar 

  13. K. Terazono, Y. Uchiyama, M. Ide, T. Watanabe, H. Yonekura, H. Yamamoto, and H. Okamoto. Expresion of reg protein in rat regenerating islets and its co-localization with insulin in the β-cell secretory granules, Diabetologia. 33:250–52 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. Unno, T. Itoh, T. Watanabe, S. Moriizumi, H. Miyashita, K. Nata, T. Anzai, H. Yonekura, H. Teraoka, and H. Okamoto, The structure and expression of two mouse reg genes (reg I and reg II), Seikagaku. 63:1012 (1991) (Abstract in Japanese).

    Google Scholar 

  15. M. Unno, T. Itoh, T. Watanabe, H. Teraoka, H. Yonekura, and H. Okamoto, (1991) in preparation.

    Google Scholar 

  16. T. Watanabe, H. Yonekura, K. Terazono, H. Yamamoto, and H. Okamoto, Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues, J Biol Chem. 265:7432–39 (1990).

    PubMed  CAS  Google Scholar 

  17. A. De Caro, J.J. Bonicel, P. Rouimi, J.D. De Caro, H. Sarles, and M. Rovery, Complete amino acid sequence of an immunoreactive form of human pancreatic stone protein isolated from pancreatic juice, Eur J Biochem. 168:201–07 (1987).

    Article  PubMed  Google Scholar 

  18. A. De Caro, Z. Adrich, B. Fournet, C. Capon, J.J. Bonicel, J.D. De Caro, and M. Rovery, N-terminal sequence extension in the glycosylated fonns of human pancreatic stone protein; the 5-oxoproline N-terminal chain is O-glycosylated on the 5th amino acid residue, Biochim Biophys Acta. 994:281–84 (1989).

    Article  PubMed  Google Scholar 

  19. J. Gross, R.J. Carlson, A. W. Brauer, M.N. Margolies, A.L. Warshaw, and J.R. Wands, Isolation, characterization, and distribution of an unusual pancreatic human secretory protein, J Clin Invest. 76:2115–26 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. P. Lechene de la Pone, A. De Caro, H. Lafont, and H. Sarles, Immunocytochemical localization of pancreatic stone protein in the human digestive tract, Pancreas. 1:301–08 (1986).

    Article  Google Scholar 

  21. L. Multigner, A. De Caro, Lombardo, D., Campese, D. and H. Sarles, Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice, Biochem Biophys Res Commun. 110:69–74 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. WHO Study Group, Diabetes Mellitus, World Health Organization Technical Report Series 727, Geneva, WHO (1985).

    Google Scholar 

  23. P.H. Bennett, Epidemology of diabetes mellitus, in: “Diabetes Mellitus-Theory and Practice, Fourth Edition,” H. Rifkin and D. Pone Jr., eds., Elsevier, New York 19

    Google Scholar 

  24. S.S. Fajans, Classification and diagnosis of diabetes, in: “Diabetes Mellitus-Theory and Practice, Fourth Edition”, H. Rifkin and D. Pone Jr., eds., Elsevier, New York (19

    Google Scholar 

  25. G. Montalto, L. Multigner, H. Sarles, and A. De Caro, Organic matrix of pancreatic stones associated with nutritional pancreatitis, Pancreas. 3:263–68 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. R.N. Melmed, Intermediate cells of the pancreas, Gastroenterology. 76:196–201 (1979).

    PubMed  CAS  Google Scholar 

  27. W J. Rutter, R.L. Pictet, J.D. Harding, J.M. Chirgwin, R.J. MacDonald, and A.E. Przybyla, An analysis of pancreatic development: role of mesenchymal factor and other extracellular factors, in: “Molecular Control of Proliferation and Differentiation”, J. Papaconstantinou and W. J. Rutter, eds., Academic Press, New York (1978).

    Google Scholar 

  28. L.A Lasky, M.S. Singer, T.A Yednock, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S.D. Rosen, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell. 56:1045–55 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Unno, M. et al. (1992). Islet β-Cell Regeneration and Reg Genes. In: Vinik, A.I., Sirman, D.J. (eds) Pancreatic Islet Cell Regeneration and Growth. Advances in Experimental Medicine and Biology, vol 321. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3448-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3448-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6526-6

  • Online ISBN: 978-1-4615-3448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics