Skip to main content

Studying the Mechanosensitivity of Voltage-Gated Channels Using Oocyte Patches

  • Protocol
Book cover Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

The mechanosensitivity of voltage-gated (VG) channels is of biophysical, physiological, and pathophysiological interest. Xenopus oocytes offer a critical advantage for investigating the electrophysiology of recombinant VG channels subjected to membrane stretch, namely, the ability to monitor macroscopic current from membrane patches. High-density channel expression in oocytes makes for macroscopic current in conventional-size, mechanically sturdy patches. With the patch configuration, precisely the same membrane that is voltage-clamped is the membrane subjected to on-off stretch stimuli. With patches, meaningful stretch dose responses are possible. Experimental design should facilitate within-patch comparisons wherever possible. The mechanoresponses of some VG channels depend critically on patch history. Methods for minimizing and coping with interference from endogenous voltage-dependent and stretch-activated endogenous channels are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., and Hamill, O. P. (2000) On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J. Physiol. 523, 101–115.

    Article  CAS  PubMed  Google Scholar 

  2. Tabarean, I. V., Juranka, P., and Morris, C. E. (1999) Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys. J. 77, 758–774.

    Article  CAS  PubMed  Google Scholar 

  3. Shcherbatko, A., Ono, F., Mandel, G., and Brehm, P. (1999) Voltage-dependent sodium channel function is regulated through membrane mechanics. Biophys. J. 77, 1945–1959.

    Article  CAS  PubMed  Google Scholar 

  4. Gu, C. X., Juranka, P. F., and Morris, C. E. (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys. J. 80, 2678–2693.

    Article  CAS  PubMed  Google Scholar 

  5. Tabarean, I. V. and Morris, C. E. (2002) Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophys. J. 82, 2982–2994.

    Article  CAS  PubMed  Google Scholar 

  6. Laitko, U. and Morris, C. E. (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J. Gen. Physiol. 123:135–154.

    Article  PubMed  Google Scholar 

  7. Calabrese, B., Tabarean, I. V., Juranka, P., and Morris, C. E. (2002) Mechanosensitivity of N-type calcium channel currents. Biophys. J. 83, 2560–2574.

    Article  CAS  PubMed  Google Scholar 

  8. Lyford, G. L., Strege, P. R., Shepard, A., et al. (2002) α(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am. J. Physiol. Cell Physiol. 283, C1001–C1008.

    CAS  PubMed  Google Scholar 

  9. Ou. Y., Strege, P., Miller, S. M., et al. (2003) Syntrophin γ 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J. Biol. Chem. 278, 1915–1923.

    Article  CAS  PubMed  Google Scholar 

  10. Wan, X., Juranka, P., and Morris, C. E. (1999) Activation of mechanosensitive currents in traumatized membrane. Am. J. Physiol. 276, C318–C327.

    CAS  PubMed  Google Scholar 

  11. Keller, H., Rentsch, P., and Hagmann, J. (2002) Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp. Cell Res. 277, 61–72.

    Article  Google Scholar 

  12. Cota, G. and Armstrong, C. M. (1988) Potassium channel “inactivation” induced by soft-glass patch pipettes. Biophys. J. 53, 107–109.

    Article  CAS  PubMed  Google Scholar 

  13. Gil, Z., Silberberg, S. D., and Magleby, K. L. (1999) Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels. Proc. Natl. Acad. Sci. USA 96, 14,594–14,599.

    Article  CAS  PubMed  Google Scholar 

  14. Terakawa, S. and Nakayama, T. (1985) Are axoplasmic microtubules necessary for membrane excitation? J. Membr. Biol. 85, 65–77.

    Article  CAS  PubMed  Google Scholar 

  15. Small, D. and Morris, C. E. (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am. J. Physiol. 267, C598–C606.

    CAS  PubMed  Google Scholar 

  16. Besch, S. R., Suchyna, T., and Sachs, F. (2002) High-speed pressure clamp. Pflugers Arch. 445, 161–166.

    Article  CAS  PubMed  Google Scholar 

  17. Sachs, F. and Morris, C. E. (1998) Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol. 132, 1–77.

    Article  CAS  PubMed  Google Scholar 

  18. Morris, C. E. and Homann, U. (2001) Cell surface area regulation and membrane tension. J. Membr. Biol. 179, 79.

    CAS  PubMed  Google Scholar 

  19. Manno, S., Takakuwa, Y., and Mohandas, N. (2002) Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99, 1943–1948.

    Article  CAS  PubMed  Google Scholar 

  20. Dan, N. and Safran, S. A. (1998) Effect of lipid characteristics on the structure of transmembrane proteins. Biophys. J. 75, 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  21. Cantor, R. S. (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76, 2625–2639.

    Article  CAS  PubMed  Google Scholar 

  22. Gullingsrud, J, and Schulten, K. (2003) Gating of MscL studied by steered molecular dynamics. Biophys. J. 85, 2087–2099.

    Article  CAS  PubMed  Google Scholar 

  23. Morris, C. E. (2001) Mechanosensitive ion channels in eukaryotic cells, in Cell Physiology Source Book, 3rd ed. (Sperelakis, N., ed.), Academic Press, New York, pp. 745–760.

    Chapter  Google Scholar 

  24. Chahine, M., Bibikova, A., and Sculptoreanu, A. (1996) Okadaic acid enhances prepulse facilitation of cardiac oil-subunit but not endogenous calcium channel currents in Xenopus laevis oocytes. Can. J. Physiol. Pharmacol. 74, 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  25. Methfessel, C., Witzemann, V., Takahashi, T., Mishina, M., Numa, S., and Sakmann, B. (1986) Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 407, 577–588.

    Article  CAS  PubMed  Google Scholar 

  26. Hamill, O. P. and McBride, D. W., Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252.

    CAS  PubMed  Google Scholar 

  27. Yang, X. C. and Sachs, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell, R. A., Clemo, H. F., and Baumgarten, C. M. (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am. J. Physiol. 275, C619–C621.

    CAS  PubMed  Google Scholar 

  29. Yeung, E. W., Head, S. I., and Allen, D. G. (2003) Gadolinium reduces short-term stretchinduced muscle damage in isolated mdx mouse muscle fibres. J. Physiol. 552, 449–458.

    Article  CAS  PubMed  Google Scholar 

  30. Ermakov, Y. A., Averbakh, A. Z., Yusipovich, A. I., and Sukharev, S. (2001) Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys. J. 80, 1851–1862.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka, T., Tamba, Y., Masum, S. M., Yamashita, Y., and Yamazaki, M. (2002) La(3+) and Gd(3+) induce shape change of giant unilamellar vesicles of phosphatidylcholine. Biochim. Biophys. Ada 1564, 173–182.

    Article  CAS  Google Scholar 

  32. Suchyna, T., Besch, S. R., and Sachs, F. (2004) Dynamic regulation of mechanosensitive channels; capacitance used to monitor patch tension in real time. Phys. Biol. 1, in press.

    Google Scholar 

  33. Bode, F., Sachs, F., and Franz, M. R. (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36.

    Article  CAS  PubMed  Google Scholar 

  34. Reifarth, F. W., Clauss, W., and Weber, W. M. (1999) Stretch-independent activation of the mechanosensitive cation channel in oocytes of Xenopus laevis. Biochim. Biophys. Acta 1417, 63–76.

    Article  CAS  PubMed  Google Scholar 

  35. Silberberg, S. D. and Magleby, K. L. (1997) Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes. J. Physiol. 505, 551–569.

    Article  CAS  PubMed  Google Scholar 

  36. Franco-Obregon, A. and Lansman, J. B. (2002) Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J. Physiol. 539, 391–407.

    Article  CAS  PubMed  Google Scholar 

  37. Suchyna, T. M., Johnson, J. H., Hamer, K., et al. (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598.

    Article  CAS  PubMed  Google Scholar 

  38. Hamill, O. P. and McBride, D. W., Jr. (1992) Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 7462–7466.

    Article  CAS  PubMed  Google Scholar 

  39. Rettinger, J. (1999) Novel properties of the depolarization-induced endogenous sodium conductance in the Xenopus laevis oocyte. Pflugers Arch. 437, 917–924.

    Article  CAS  PubMed  Google Scholar 

  40. Charpentier, G. and Kado, R. T. (1999) Induction of Na+ channel voltage sensitivity in Xenopus oocytes depends on Ca2+ mobilization. J. Cell Physiol. 178, 258–266.

    Article  CAS  PubMed  Google Scholar 

  41. Kuruma, A., Hirayama, Y., and Hartzell, H. C. (2000) A hyperpolarization-and acidactivated nonselective cation current in Xenopus oocytes. Am. J. Physiol. Cell Physiol. 279, C1401–C1413.

    CAS  PubMed  Google Scholar 

  42. Tzounopoulos, T., Maylie, J., and Adelman, J. P. (1995) Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys. J. 69, 904–908.

    Article  CAS  PubMed  Google Scholar 

  43. Sha, Q., Lansbery, K. L., Distefano, D., Mercer, R. W., and Nichols, C. G. (2001) Heterologous expression of the Na(+),K(+)-ATPase γ subunit in Xenopus oocytes induces an endogenous, voltage-gated large diameter pore. J. Physiol. 535, 407–417.

    Article  CAS  PubMed  Google Scholar 

  44. Steinacker, P., Awni, L. A., Becker, S., et al. (2000) The plasma membrane of Xenopus laevis oocytes contains voltage-dependent anion-selective porin channels. Int. J. Biochem. Cell Biol. 32, 225–234.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, J. and Zagotta, W. N. (2003) Patch-clamp fluorometry recording of conformational rearrangements of ion channels. Sci. STKE. 176, PL7.

    Google Scholar 

  46. Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., and Hamill, O. P. (2005), TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179–185.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Morris, C.E., Juranka, P.F., Lin, W., Morris, T.J., Laitko, U. (2006). Studying the Mechanosensitivity of Voltage-Gated Channels Using Oocyte Patches. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics