Skip to main content

Bacteriophage φC31 Integrase Mediated Transgenesis in Xenopus laevis for Protein Expression at Endogenous Levels

  • Protocol
  • First Online:
Book cover Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 518))

Abstract

Bacteriophage φC31 inserts its genome into that of its host bacterium via the integrase enzyme which catalyzes recombination between a phage attachment site (attP) and a bacterial attachment site (attB). Integrase requires no accessory factors, has a high efficiency of recombination, and does not need perfect sequence fidelity for recognition and recombination between these attachment sites. These imperfect attachment sites, or pseudo-attachment sites, are present in many organisms and have been used to insert transgenes in a variety of species. Here we describe the φC31 integrase approach to make transgenic Xenopus laevis embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroll K.L., Amaya E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–83.

    CAS  Google Scholar 

  2. Sparrow D.B., Latinkic B., Mohun T.J. (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res. 28, E12.

    Article  CAS  Google Scholar 

  3. Ogino H., McConnell W.B., Grainger R.M. (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123, 103–13.

    Article  CAS  Google Scholar 

  4. Pan F.C., Chen Y., Loeber J., Henningfeld K., Pieler T. (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev. Dyn. 235, 247–52.

    Article  Google Scholar 

  5. Liu J., Jeppesen I., Nielsen K., Jensen T.G. (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther. 13, 1188–90.

    Article  CAS  Google Scholar 

  6. Kuhstoss S., Rao R.N. (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol. 222, 897–908.

    Article  CAS  Google Scholar 

  7. Thyagarajan B., Olivares E.C., Hollis R.P., Ginsburg D.S., Calos M.P. (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. & Cell. Biol. 21, 3926–34.

    Article  CAS  Google Scholar 

  8. Thorpe H.M., Smith M.C. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Nat. Acad. Sci. USA 95, 5505–10.

    Google Scholar 

  9. Lutz K.A., Corneille S., Azhagiri A.K., Svab Z., Maliga P. (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J. 37, 906–13.

    Article  CAS  Google Scholar 

  10. Groth A.C., Olivares E.C., Thyagarajan B., Calos M.P. (2000) A phage integrase directs efficient site-specific integration in human cells. Proc. Nat. Acad. Sci. USA 97, 5995–6000.

    Google Scholar 

  11. Chalberg T.W., Genise H.L., Vollrath D., Calos M.P. (2005) phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest. Ophthalmol. Vis. Sci. 46, 2140–6.

    Article  Google Scholar 

  12. Thomason L.C., Calendar R., Ow D.W. (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol. Gen. & Genomics: MGG. 265, 1031–8.

    Article  CAS  Google Scholar 

  13. Olivares E.C., Hollis R.P., Chalberg T.W., Meuse L., Kay M.A., Calos M.P. (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol. 20, 1124–8.

    Article  CAS  Google Scholar 

  14. Held P.K., Olivares E.C., Aguilar C.P., Finegold M., Calos M.P., Grompe M. (2005) In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol. Ther. 11, 399–408.

    Article  CAS  Google Scholar 

  15. Belteki G., Gertsenstein M., Ow D.W., Nagy A. (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol. 21, 321–4.

    Article  CAS  Google Scholar 

  16. Keravala A., Portlock J.L., Nash J.A., Vitrant D.G., Robbins P.D., Calos M.P. (2006) PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints. J. Gene Med. 8, 1008–17.

    Article  CAS  Google Scholar 

  17. Ishikawa Y., Tanaka N., Murakami K., Uchiyama T., Kumaki S., Tsuchiya S., Kugoh H., Oshimura M., Calos M.P., Sugamura K. (2006) Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J. Gene Med. 8, 646–53.

    Article  CAS  Google Scholar 

  18. Bertoni C., Jarrahian S., Wheeler T.M., Li Y., Olivares E.C., Calos M.P., Rando T.A. (2006) Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc. Natl. Acad. Sci. USA 103, 419–24.

    Google Scholar 

  19. Groth A.C., Fish M., Nusse R., Calos M.P. (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–82.

    Article  CAS  Google Scholar 

  20. Allen B.G., Weeks D.L. (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat. Methods 2, 897–8.

    Article  Google Scholar 

  21. Kuhn E.J., Geyer P.K. (2003) Genomic insulators: connecting properties to mechanism. Curr. Opin. Cell Biol. 15, 259–65.

    Article  CAS  Google Scholar 

  22. West A.G., Gaszner M., Felsenfeld G. (2002) Insulators: many functions, many mechanisms. Genes Dev. 16, 271–88.

    Article  Google Scholar 

  23. Hollis R.P., Stoll S.M., Sclimenti C.R., Lin J., Chen-Tsai Y., Calos M.P. (2003) Phage integrases for the construction and manipulation of transgenic mammals. Reprod. Biol. Endocrinol. 1, 79.

    Article  Google Scholar 

  24. Sive H.L., Grainger R.M., Harland R.M. (2000) Early Development of Xenopus laevi: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Michele Calos for providing the pET11phiC31poly(A) plasmid, Professor Gary Felsenfeld for providing the HS4 insulator sequences, and Paul Kreig for providing the gamma crystallin lens promoter. This work was supported by funding from the NIH (GM069944 and DC007481). Bryan Allen is a student in the Medical Scientist Training Program at the Roy J. and Lucille A Carver College of Medicine, University of Iowa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Allen, B.G., Weeks, D.L. (2009). Bacteriophage φC31 Integrase Mediated Transgenesis in Xenopus laevis for Protein Expression at Endogenous Levels. In: Carroll, D. (eds) Microinjection. Methods in Molecular Biology, vol 518. Humana Press. https://doi.org/10.1007/978-1-59745-202-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-202-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-884-3

  • Online ISBN: 978-1-59745-202-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics