Skip to main content

Efficient Retroviral Gene Transfer to Epidermal Stem Cells

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

Skin is an attractive target for gene modification to treat skin diseases, wound healing, or even systemic disorders. Although retroviral transduction results in permanent genetic modification, differentiation and eventually loss of the transduced cells from the epidermis and in temporary transgene expression. Therefore, it is important to develop methods that promote gene transfer to epidermal stem cells, which self-renew and regenerate the epidermis for extended periods of time. Here we describe an efficient protocol that results in high levels of retroviral gene transfer to human epidermal stem cells by immobilizing retrovirus on a recombinant fibronectin (rFN) fragment. In contrast to the traditional method, transduction on rFN promotes gene transfer to epidermal stem cells and prevents loss of clonogenic potential due to exposure of cells to retroviral supernatant. Notably, transduction on rFN does not require addition of toxic polycations such as polybrene. Overall this method provides a simple, fast, and efficient means to modify human epidermal stem cells for cutaneous gene therapy and for biological studies that require stable genetic modification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Choate, K. A., Kinsella, T. M., Williams, M. L., Nolan, G. P. and Khavari, P. A. (1996) Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes. Hum Gene Ther 7, 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  2. Choate, K. A., Medalie, D. A., Morgan, J. R. and Khavari, P. A. (1996) Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nat Med 2, 1263–1267.

    Article  CAS  PubMed  Google Scholar 

  3. Freiberg, R. A., Choate, K. A., Deng, H., Alperin, E. S., Shapiro, L. J. and Khavari, P. A. (1997) A model of corrective gene transfer in X-linked ichthyosis. Hum Mol Genet 6, 927–933.

    Article  CAS  PubMed  Google Scholar 

  4. Dellambra, E., Vailly, J., Pellegrini, G., Bondanza, S., Golisano, O., Macchia, C., Zambruno, G., Meneguzzi, G. and De Luca, M. (1998) Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa. Hum Gene Ther 9, 1359–1370.

    Article  CAS  PubMed  Google Scholar 

  5. Dellambra, E., Pellegrini, G., Guerra, L., Ferrari, G., Zambruno, G., Mavilio, F. and De Luca, M. (2000) Toward epidermal stem cell-mediated ex vivo gene therapy of junctional epidermolysis bullosa. Hum Gene Ther 11, 2283–2287.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander, M. Y., Bidichandani, S. I., Cousins, F. M., Robinson, C. J., Duffie, E. and Akhurst, R. J. (1995) Circulating human factor IX produced in keratin-promoter transgenic mice: a feasibility study for gene therapy of haemophilia B. Hum Mol Genet 4, 993–999.

    Article  CAS  PubMed  Google Scholar 

  7. Page, S. M. and Brownlee, G. G. (1997) An ex vivo keratinocyte model for gene therapy of hemophilia B. J Invest Dermatol 109, 139–145.

    Article  CAS  PubMed  Google Scholar 

  8. Fenjves, E. S., Schwartz, P. M., Blaese, R. M. and Taichman, L. B. (1997) Keratinocyte gene therapy for adenosine deaminase deficiency: a model approach for inherited metabolic disorders. Hum Gene Ther 8, 911–917.

    Article  CAS  PubMed  Google Scholar 

  9. Larcher, F., Del Rio, M., Serrano, F., Segovia, J. C., Ramirez, A., Meana, A., Page, A., Abad, J. L., Gonzalez, M. A., Bueren, J., Bernad, A. and Jorcano, J. L. (2001) A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 15, 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  10. Eming, S. A., Medalie, D. A., Tompkins, R. G., Yarmush, M. L. and Morgan, J. R. (1998) Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther 9, 529–539.

    Article  CAS  PubMed  Google Scholar 

  11. Eming, S. A., Snow, R. G., Yarmush, M. L. and Morgan, J. R. (1996) Targeted expression of insulin-like growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation. J Invest Dermatol 107, 113–120.

    Article  CAS  PubMed  Google Scholar 

  12. Andreadis, S. T., Hamoen, K. E., Yarmush, M. L. and Morgan, J. R. (2001) Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J 15, 898–906.

    Article  CAS  PubMed  Google Scholar 

  13. Supp, D. M., Supp, A. P., Bell, S. M. and Boyce, S. T. (2000) Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol 114, 5–13.

    Article  CAS  PubMed  Google Scholar 

  14. Supp, D. M. and Boyce, S. T. (2002) Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care Rehabil 23, 10–20.

    Article  PubMed  Google Scholar 

  15. Bajaj, B. G., Lei, P. and Andreadis, S. T. (2005) Efficient gene transfer to human epidermal keratinocytes on fibronectin: in vitro evidence for transduction of epidermal stem cells. Mol Ther 11, 969–979.

    Article  CAS  PubMed  Google Scholar 

  16. Hanenberg, H., Xiao, X. L., Dilloo, D., Hashino, K., Kato, I. and Williams, D. A. (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2, 876–882.

    Article  CAS  PubMed  Google Scholar 

  17. Lei, P., Bajaj, B. and Andreadis, S. T. (2002) Retrovirus-associated heparan sulfate mediates immobilization and gene transfer on recombinant fibronectin. J Virol 76, 8722–8728.

    Article  CAS  PubMed  Google Scholar 

  18. Pollok, K. E., Hanenberg, H., Noblitt, T. W., Schroeder, W. L., Kato, I., Emanuel, D. and Williams, D. A. (1998) High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J Virol 72, 4882–4892.

    CAS  PubMed  Google Scholar 

  19. Moritz, T., Dutt, P., Xiao, X., Carstanjen, D., Vik, T., Hanenberg, H. and Williams, D. A. (1996) Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88, 855–862.

    CAS  PubMed  Google Scholar 

  20. Conneally, E., Eaves, C. J. and Humphries, R. K. (1998) Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood 91, 3487–3493.

    CAS  PubMed  Google Scholar 

  21. Dao, M. A., Hashino, K., Kato, I. and Nolta, J. A. (1998) Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 92, 4612–4621.

    CAS  PubMed  Google Scholar 

  22. Kiem, H. P., Andrews, R. G., Morris, J., Peterson, L., Heyward, S., Allen, J. M., Rasko, J. E., Potter, J. and Miller, A. D. (1998) Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 92, 1878–1886.

    CAS  PubMed  Google Scholar 

  23. Dardalhon, V., Noraz, N., Pollok, K., Rebouissou, C., Boyer, M., Bakker, A. Q., Spits, H. and Taylor, N. (1999) Green fluorescent protein as a selectable marker of fibronectin-facilitated retroviral gene transfer in primary human T lymphocytes. Hum Gene Ther 10, 5–14.

    Article  CAS  PubMed  Google Scholar 

  24. Le Doux, J. M., Morgan, J. R. and Yarmush, M. L. (1996) Proteoglycans secreted by packaging cell lines inhibit retrovirus infection. J Virol 70, 6468–6473.

    CAS  PubMed  Google Scholar 

  25. Chuck, A. S., Clarke, M. F. and Palsson, B. O. (1996) Retroviral infection is limited by Brownian motion. Hum Gene Ther 7, 1527–1534.

    Article  CAS  PubMed  Google Scholar 

  26. Bajaj, B., Lei, P. and Andreadis, S. T. (2001) High efficiencies of gene transfer with immobilized recombinant retrovirus: kinetics and optimization. Biotechnol Prog 17, 587–596.

    Article  CAS  PubMed  Google Scholar 

  27. Andreadis, S., Lavery, T., Davis, H. E., Le Doux, J. M., Yarmush, M. L. and Morgan, J. R. (2000) Toward a more accurate quantitation of the activity of recombinant retroviruses: alternatives to titer and multiplicity of infection. J Virol 74, 3431–3439.

    Article  CAS  PubMed  Google Scholar 

  28. Bajaj, B., Behshad, S. and Andreadis, S. T. (2002) Retroviral gene transfer to human epidermal keratinocytes correlates with integrin expression and is significantly enhanced on fibronectin. Hum Gene Ther 13, 1821–1831.

    Article  CAS  PubMed  Google Scholar 

  29. Barrandon, Y. and Green, H. (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84, 2302–2306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lei, P., Andreadis, S.T. (2008). Efficient Retroviral Gene Transfer to Epidermal Stem Cells. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics