Skip to main content

Multiple Alignment of DNA Sequences with MAFFT

  • Protocol
  • First Online:
Book cover Bioinformatics for DNA Sequence Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 537))

Abstract

Multiple alignment of DNA sequences is an important step in various molecular biological analyses. As a large amount of sequence data is becoming available through genome and other large-scale sequencing projects, scalability, as well as accuracy, is currently required for a multiple sequence alignment (MSA) program. In this chapter, we outline the algorithms of an MSA program MAFFT and provide practical advice, focusing on several typical situations a biologist sometimes faces. For genome alignment, which is beyond the scope of MAFFT, we introduce two tools: TBA and MAUVE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woese, C. R., and Fox, G. E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74, 5088–90.

    Article  PubMed  CAS  Google Scholar 

  2. Flicek, P., Keibler, E., Hu, P., Korf, I., and Brent, M. R. (2003) Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. Genome Res 13, 46–54.

    Article  PubMed  CAS  Google Scholar 

  3. Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059–66.

    Article  PubMed  CAS  Google Scholar 

  4. Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511–8.

    Article  PubMed  CAS  Google Scholar 

  5. Wilm, A., Mainz, I., and Steger, G. (2006) An enhanced RNA alignment benchmark for sequence alignment programs. Algorithms Mol Biol 1, 19.

    Article  PubMed  Google Scholar 

  6. Carroll, H., Beckstead, W., O’connor, T., Ebbert, M., Clement, M., Snell, Q., and McClellan, D. (2007) DNA reference alignment benchmarks based on tertiary structure of encoded proteins. Bioinformatics 23, 2648–49.

    Google Scholar 

  7. Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D., and Miller, W. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14, 708–15.

    Article  PubMed  CAS  Google Scholar 

  8. http://www.bx.psu.edu/miller_lab

  9. Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394–403.

    Article  PubMed  CAS  Google Scholar 

  10. http://gel.ahabs.wisc.edu/mauve/

  11. Edgar, R. C., and Batzoglou, S. (2006) Multiple sequence alignment. Curr Opin Struct Biol 16, 368–73.

    Article  PubMed  CAS  Google Scholar 

  12. Needleman, S. B., and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48, 443–53.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, T. F., and Waterman, M. S. (1981) Identification of common molecular subsequences. J Mol Biol 147, 195–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gotoh, O. (1982) An improved algorithm for matching biological sequences. J Mol Biol 162, 705–8.

    Article  PubMed  CAS  Google Scholar 

  15. Feng, D. F., and Doolittle, R. F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25, 351–60.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–80.

    Article  PubMed  CAS  Google Scholar 

  17. Katoh, K., and Toh, H. (2007) Parttree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics 23, 372–4.

    Article  PubMed  CAS  Google Scholar 

  18. Barton, G. J., and Sternberg, M. J. (1987) A strategy for the rapid multiple alignment of protein sequences. confidence levels from tertiary structure comparisons. J Mol Biol 198, 327–37.

    Article  PubMed  CAS  Google Scholar 

  19. Berger, M. P., and Munson, P. J. (1991) A novel randomized iterative strategy for aligning multiple protein sequences. Comput Appl Biosci 7, 479–84.

    PubMed  CAS  Google Scholar 

  20. Gotoh, O. (1993) Optimal alignment between groups of sequences and its application to multiple sequence alignment. Comput Appl Biosci 9, 361–70.

    PubMed  CAS  Google Scholar 

  21. Ishikawa, M., Toya, T., Hoshida, M., Nitta, K., Ogiwara, A., and Kanehisa, M. (1993) Multiple sequence alignment by parallel simulated annealing. Comput Appl Biosci 9, 267–73.

    PubMed  CAS  Google Scholar 

  22. Notredame, C., and Higgins, D. G. (1996) Saga: sequence alignment by genetic algorithm. Nucleic Acids Res 24, 1515–24.

    Article  PubMed  CAS  Google Scholar 

  23. Gotoh, O. (1994) Further improvement in methods of group-to-group sequence alignment with generalized profile operations. Comput Appl Biosci 10, 379–87.

    PubMed  CAS  Google Scholar 

  24. Gotoh, O. (1995) A weighting system and algorithm for aligning many phylogenetically related sequences. Comput Appl Biosci 11, 543–51.

    PubMed  CAS  Google Scholar 

  25. Gotoh, O. (1996) Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol 264, 823–38.

    Article  PubMed  CAS  Google Scholar 

  26. Hirosawa, M., Totoki, Y., Hoshida, M., and Ishikawa, M. (1995) Comprehensive study on iterative algorithms of multiple sequence alignment. Comput Appl Biosci 11, 13–18.

    PubMed  CAS  Google Scholar 

  27. Vingron, M., and Argos, P. (1989) A fast and sensitive multiple sequence alignment algorithm. Comput Appl Biosci 5, 115–21.

    PubMed  CAS  Google Scholar 

  28. Gotoh, O. (1990) Consistency of optimal sequence alignments. Bull Math Biol 52, 509–25.

    PubMed  CAS  Google Scholar 

  29. Notredame, C., Holm, L., and Higgins, D. G. (1998) COFFEE: an objective function for multiple sequence alignments. Bioinformatics 14, 407–22.

    Article  PubMed  CAS  Google Scholar 

  30. Notredame, C., Higgins, D. G., and Heringa, J. (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–17.

    Article  PubMed  CAS  Google Scholar 

  31. Higgins, D. G., and Sharp, P. M. (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–44.

    Article  PubMed  CAS  Google Scholar 

  32. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275–82.

    PubMed  CAS  Google Scholar 

  33. Altschul, S. F. (1998) Generalized affine gap costs for protein sequence alignment. Proteins 32, 88–96.

    Article  PubMed  CAS  Google Scholar 

  34. Myers, E. W., and Miller, W. (1988) Optimal alignments in linear space. Comput Appl Biosci 4, 11–17.

    PubMed  CAS  Google Scholar 

  35. Gribskov, M., McLachlan, A. D., and Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA, 84, 4355–58.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and Miller, W. (2003) Human-mouse alignments with BLASTZ. Genome Res 13, 103–7.

    Article  PubMed  CAS  Google Scholar 

  37. http://genome.ucsc.edu/FAQ/FAQformat

  38. http://genome.ucsc.edu/

  39. Smit, A. F. A., Hubley, R., and Green, P. Repeatmasker. http://www.repeatmasker.org/

  40. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–80.

    Article  PubMed  CAS  Google Scholar 

  41. http://globin.cse.psu.edu/dist/gmaj/

  42. http://www.bx.psu.edu/miller_lab/dist/tba_howto.pdf

  43. http://gel.ahabs.wisc.edu/mauve/mauve-user-guide/

  44. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search pro grams. Nucleic Acids Res 25, 3389–402.

    Article  PubMed  CAS  Google Scholar 

  45. Morgenstern, B., Goel, S., Sczyrba, A., and Dress, A. (2003) Altavist: comparing alternative multiple sequence alignments. Bioinformatics 19, 425–6.

    Article  PubMed  CAS  Google Scholar 

  46. Lassmann, T., and Sonnhammer, E. L. (2007) Automatic extraction of reliable regions from multiple sequence alignments. BMC Bioinformat 8 Suppl 5, S9.

    Article  Google Scholar 

  47. Morgenstern, B., Dress, A., and Werner, T. (1996) Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc Natl Acad Sci USA 93, 12098–103.

    Article  PubMed  CAS  Google Scholar 

  48. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–7.

    Article  PubMed  CAS  Google Scholar 

  49. Do, C. B., Mahabhashyam, M. S., Brudno, M., and Batzoglou, S. (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15, 330–40.

    Article  PubMed  CAS  Google Scholar 

  50. Lassmann, T., and Sonnhammer, E. L. (2005) Kalign – an accurate and fast multiple sequence alignment algorithm. BMC Bioinformat 6, 298.

    Article  Google Scholar 

  51. Wallace, I. M., O’Sullivan, O., Higgins, D. G., and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with t-coffee. Nucleic Acids Res 34, 1692–9.

    Article  PubMed  CAS  Google Scholar 

  52. Golubchik, T., Wise, M. J., Easteal, S., and Jermiin, L. S. (2007) Mind the gaps: Evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol 24, 2433–42.

    Google Scholar 

  53. Do, C. B., and Katoh, K. (2008) Protein multiple sequence alignment Functional Proteomics, Methods Mol Biol 484, 379–413.

    Google Scholar 

  54. Morrison, D. (2006) Multiple sequence alignment for phylogenetic purposes. Aust Syst Bot 19, 479–539.

    Article  CAS  Google Scholar 

  55. Roshan, U., and Livesay, D. R. (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22, 2715–21.

    Article  PubMed  CAS  Google Scholar 

  56. Yamada, S., Gotoh, O., and Yamana, H. (2006) Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost. BMC Bioinformat 7, 524.

    Article  Google Scholar 

  57. Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D., Sidow, A., and Batzoglou, S. (2003) LAGAN and multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13, 721–31.

    Article  PubMed  CAS  Google Scholar 

  58. Bray, N., and Pachter, L. (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res. 14, 693–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chuong B. Do for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katoh, K., Asimenos, G., Toh, H. (2009). Multiple Alignment of DNA Sequences with MAFFT. In: Posada, D. (eds) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology, vol 537. Humana Press. https://doi.org/10.1007/978-1-59745-251-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-251-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-910-9

  • Online ISBN: 978-1-59745-251-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics