Skip to main content

Biochemical Techniques for the Characterization of G-Quadruplex Structures: EMSA, DMS Footprinting, and DNA Polymerase Stop Assay

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

Abstract

The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin RZ, Breslauer KJ, Jones RA, Gaffney BL (1990) Tetraplex formation of a guanine-containing nonameric DNA fragment. Science 250:543–546

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Patel DJ (1994) Solution structure of the Tetrahymena telomeric repeat d(T2G4)4 G-tetraplex. Structure 2:1141–1156

    Article  CAS  PubMed  Google Scholar 

  3. Hammond-Kosack MC, Kilpatrick MW, Docherty K (1993) The human insulin gene-linked polymorphic region adopts a G-quartet structure in chromatin assembled in vitro. J Mol Endocrinol 10:121–126

    Article  CAS  PubMed  Google Scholar 

  4. Murchie AI, Lilley DM (1992) Retinoblastoma susceptibility genes contain 5′ sequences with a high propensity to form guanine-tetrad structures. Nucleic Acids Res 20:49–53

    Article  CAS  PubMed  Google Scholar 

  5. Fry M, Loeb LA (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 91:4950–4954

    Article  CAS  PubMed  Google Scholar 

  6. Majumdar A, Gosser Y, Patel DJ (2001) 1H–1H correlations across N–H···N hydrogen bonds in nucleic acids. J Biomol NMR 21:289–306

    Article  CAS  PubMed  Google Scholar 

  7. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  8. Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D (1996) Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 16:2656–2669

    CAS  PubMed  Google Scholar 

  9. Rustighi A, Tessari MA, Vascotto F, Sgarra R, Giancotti V, Manfioletti G (2002) Apolypyrimidine/polypurine tract within the Hmga2 minimal promoter: a common feature of many growth-related genes. Biochemistry 41:1229–1240

    Article  CAS  PubMed  Google Scholar 

  10. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  PubMed  Google Scholar 

  11. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  12. Phan AT, Modi YS, Patel DJ (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 126:8710–8716

    Article  CAS  PubMed  Google Scholar 

  13. Dai J, Chen D, Jones RA, Hurley LH, Yang D (2006) NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res 34:5133–5144

    Article  CAS  PubMed  Google Scholar 

  14. De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry 44:16341–16350

    Article  PubMed  Google Scholar 

  15. Sun D, Guo K, Rusche JJ, Hurley LH (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 33:6070–6080

    Article  CAS  PubMed  Google Scholar 

  16. Dexheimer TS, Sun D, Hurley LH (2006) Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc 128:5404–5415

    Article  CAS  PubMed  Google Scholar 

  17. Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007) Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res 35:7698–7713

    Article  CAS  PubMed  Google Scholar 

  18. Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007) Formation of pseudo-symmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J Am Chem Soc 129:10220–10228

    Article  CAS  PubMed  Google Scholar 

  19. Akman SA, Lingeman RG, Doroshow JH, Smith SS (1991) Quadruplex DNA formation in a region of the tRNA gene supF associated with hydrogen peroxide mediated mutations. Biochemistry 30:8648–8653

    Article  CAS  PubMed  Google Scholar 

  20. Woodford KJ, Howell RM, Usdin K (1994) A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. J Biol Chem 269:27029–27035

    CAS  PubMed  Google Scholar 

  21. Han H, Hurley LH, Salazar M (1999) A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res 27:537–542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institutes of Health (CA109069 and CA94166). We are grateful to David Bishop for preparing, proofreading, and editing the final version of the manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daekyu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, D., Hurley, L.H. (2010). Biochemical Techniques for the Characterization of G-Quadruplex Structures: EMSA, DMS Footprinting, and DNA Polymerase Stop Assay. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics