Skip to main content

μChIP: Chromatin Immunoprecipitation for Small Cell Numbers

  • Protocol
  • First Online:
Chromatin Immunoprecipitation Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

Chromatin immunoprecipitation (ChIP) is a technique of choice for studying protein–DNA interactions. ChIP has been used for mapping the location of modified histones on DNA, often in relation to transcription or differentiation. Conventional ChIP protocols, however, require large number of cells, which limits the applicability of ChIP to rare cell samples. ChIP assays for small cell numbers (in the range of 10,000–100,000) have been recently reported; however, these remain lengthy. Our laboratory has elaborated fast ChIP assays suitable for small cell numbers (100–100,000) and for the immunoprecipitation of histone proteins or transcription factors under cross-linking conditions. We describe here a rapid micro (μ)ChIP assay suited for multiple parallel ChIPs from a single chromatin batch from 1,000 cells. The assay is also applicable to a single immunoprecipitation from 100 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collas, P. and Dahl, J. A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943.

    Article  PubMed  CAS  Google Scholar 

  2. O'Neill, L. P. and Turner, B. M. (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957.

    PubMed  Google Scholar 

  3. O'Neill, L. P. and Turner, B. M. (1996) Immunoprecipitation of chromatin. Methods Enzymol. 274, 189–197.

    Article  PubMed  Google Scholar 

  4. O'Neill, L. P., Vermilyea, M. D. and Turner, B. M. (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet. 38, 835–841.

    Article  PubMed  Google Scholar 

  5. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M. and Fisher, A. G. (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538.

    Article  PubMed  CAS  Google Scholar 

  6. Nelson, J. D., Denisenko, O., Sova, P. and Bomsztyk, K. (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2.

    Article  PubMed  Google Scholar 

  7. Dahl, J. A. and Collas, P. (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  8. Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T. and Weissman, I. L. (2007) Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc. Natl. Acad. Sci. U.S.A. 104, 12371–12376.

    Article  PubMed  CAS  Google Scholar 

  9. Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., III, Gingeras, T. R., Schreiber, S. L. and Lander, E. S. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181.

    Article  PubMed  CAS  Google Scholar 

  10. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R. and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L. and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  12. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B. and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., Chevalier, B., Johnstone, S. E., Cole, M. F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H. L., Zucker, J. P., Yuan, B., Bell, G. W., Herbolsheimer, E., Hannett, N. M., Sun, K., Odom, D. T., Otte, A. P., Volkert, T. L., Bartel, D. P., Melton, D. A., Gifford, D. K., Jaenisch, R. and Young, R. A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.

    Article  PubMed  CAS  Google Scholar 

  14. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. and Young, R. A. (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.

    Article  PubMed  CAS  Google Scholar 

  15. Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R. and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43, 791–797.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., Orlov, Y. L., Sung, W. K., Shahab, A., Kuznetsov, V. A., Bourque, G., Oh, S., Ruan, Y., Ng, H. H. and Wei, C. L. (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298.

    Article  PubMed  CAS  Google Scholar 

  17. O'Neill, L. P. and Turner, B. M. (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82.

    Article  PubMed  Google Scholar 

  18. Hudson, M. E. and Snyder, M. (2006) High-throughput methods of regulatory element discovery. Biotechniques 41, 673, 675, 677.

    Article  PubMed  CAS  Google Scholar 

  19. Dunn, J. J., McCorkle, S. R., Everett, L. and Anderson, C. W. (2007) Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes. Genet. Eng. (NY) 28, 159–173.

    Article  CAS  Google Scholar 

  20. Aiba, K., Carter, M. G., Matoba, R. and Ko, M. S. (2006) Genomic approaches to early embryogenesis and stem cell biology. Semin. Reprod. Med. 24, 330–339.

    Article  PubMed  CAS  Google Scholar 

  21. Clark, D. J. and Shen, C. H. (2006) Mapping histone modifications by nucleosome immunoprecipitation. Methods Enzymol. 410, 416–430.

    Article  PubMed  CAS  Google Scholar 

  22. Negre, N., Lavrov, S., Hennetin, J., Bellis, M. and Cavalli, G. (2006) Mapping the distribution of chromatin proteins by ChIP on chip. Methods Enzymol. 410, 316–341.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, J., Smith, L. T., Plass, C. and Huang, T. H. (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 66, 6899–6902.

    Article  PubMed  CAS  Google Scholar 

  24. Bulyk, M. L. (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430.

    Article  PubMed  CAS  Google Scholar 

  25. O'Geen, H., Nicolet, C. M., Blahnik, K., Green, R. and Farnham, P. J. (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41, 577–580.

    Article  PubMed  Google Scholar 

  26. Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185.

    Article  PubMed  CAS  Google Scholar 

  27. Flanagin, S., Nelson, J. D., Castner, D. G., Denisenko, O. and Bomsztyk, K. (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res. 36, e17.

    Article  PubMed  Google Scholar 

  28. Dahl, J. A. and Collas, P. (2008) MicroChIP – A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 36, e15.

    Article  PubMed  Google Scholar 

  29. Dahl, J. A. and Collas, P. (2008) A rapid micro chromatin immunoprecipitation assay (μChIP). Nat. Protoc. 3, 1032–1045.

    Article  PubMed  CAS  Google Scholar 

  30. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by the FUGE, YFF, STAMCELLER, and STORFORSK programs of the Research Council of Norway and by the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dahl, J.A., Collas, P. (2009). μChIP: Chromatin Immunoprecipitation for Small Cell Numbers. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics