Skip to main content

Persistence Mechanisms of Conjugative Plasmids

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liebert, C. A., Hall, R. M., and Summers, A. O. (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev. 63, 507–522.

    CAS  PubMed  Google Scholar 

  2. Hall, R. M., and Collis, C. M. (1995) Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 15, 593–600.

    Article  CAS  PubMed  Google Scholar 

  3. Bennett, P. M. (1999) Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother. 43, 1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Szczepanowski, R., Braun, S., Riedel, V., Schneiker, S., Krahn, I., Pühler, A., and Schlüter, A. (2005) The 120,592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology. 151, 1095–1111.

    Article  CAS  PubMed  Google Scholar 

  5. Villa, L., Pezzella, C., Tosini, F., Visca, P., Petrucca, A., and Carattoli, A. (2000) Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an extended-spectrum beta-lactamase gene and a class 1 integron. Antimicrob Agents Chemother. 44, 2911–2914.

    Article  CAS  PubMed  Google Scholar 

  6. Stokes, H. W., and Hall, R. M. (1992) The integron In1 in plasmid R46 includes two copies of the oxa2 gene cassette. Plasmid. 28, 225–234.

    Article  CAS  PubMed  Google Scholar 

  7. Tennstedt, T., Szczepanowski, R., Krahn, I., Pühler, A., and Schlüter, A. (2005) Sequence of the 68,869 bp IncP-1alpha plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid. 53, 218–238.

    Article  CAS  PubMed  Google Scholar 

  8. Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E. M., and Schlüter, A. (2004) The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1beta group without any accessory genes. Microbiology. 150, 3591–3599.

    Article  CAS  PubMed  Google Scholar 

  9. Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C. M., Pühler, A., and Top, E. M. (2003) The 64 508 bp IncP-1beta antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1beta group. Microbiology. 149, 3139–3153.

    Article  PubMed  CAS  Google Scholar 

  10. Schlüter, A., Heuer, H., Szczepanowski, R., Poler, S. M., Schneiker, S., Pühler, A., and Top, E. M. (2005) Plasmid pB8 is closely related to the prototype IncP-1beta plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid. 54, 135–148.

    Article  PubMed  CAS  Google Scholar 

  11. Thorsted, P. B., Macartney, D. P., Akhtar, P., Haines, A. S., Ali, N., Davidson, P., Stafford, T., Pocklington, M. J., Pansegrau, W., Wilkins, B. M., Lanka, E., and Thomas, C. M. (1998) Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol. 282, 969–990.

    Article  CAS  PubMed  Google Scholar 

  12. Haines, A. S., Jones, K., Cheung, M., and Thomas, C. M. (2005) The IncP-6 plasmid Rms149 consists of a small mobilizable backbone with multiple large insertions. J Bacteriol. 187, 4728–4738.

    Article  CAS  PubMed  Google Scholar 

  13. Rhodes, G., Parkhill, J., Bird, C., Ambrose, K., Jones, M. C., Huys, G., Swings, J., and Pickup, R. W. (2004) Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol. 70, 7497–7510.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Lopez, R., Garcillan-Barcia, M. P., Revilla, C., Lazaro, M., Vielva, L., and de la Cruz, F. (2006) Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev. 30, 942–966.

    Article  CAS  PubMed  Google Scholar 

  15. Levings, R. S., Hall, R. M., Lightfoot, D., and Djordjevic, S. P. (2006) linG, a new integron-associated gene cassette encoding a lincosamide nucleotidyltransferase. Antimicrob Agents Chemother. 50, 3514–3515.

    Article  CAS  PubMed  Google Scholar 

  16. Fluit, A. C., and Schmitz, F. J. (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis. 18, 761–770.

    Article  CAS  PubMed  Google Scholar 

  17. Fluit, A. C., and Schmitz, F. J. (2004) Resistance integrons and super-integrons. Clin Microbiol Infect. 10, 272–288.

    Article  CAS  PubMed  Google Scholar 

  18. Antunes, P., Machado, J., Sousa, J. C., and Peixe, L. (2005) Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Chemother. 49, 836–839.

    Article  CAS  PubMed  Google Scholar 

  19. Partridge, S. R., and Hall, R. M. (2005) Correctly identifying the streptothricin resistance gene cassette. J Clin Microbiol. 43, 4298–4300.

    Article  CAS  PubMed  Google Scholar 

  20. Stokes, H. W., Nesbo, C. L., Holley, M., Bahl, M. I., Gillings, M. R., and Boucher, Y. (2006) Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. J Bacteriol. 188, 5722–5730.

    Article  CAS  PubMed  Google Scholar 

  21. Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M., Mabbutt, B. C., and Gillings, M. R. (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol. 67, 5240–5246.

    Article  CAS  PubMed  Google Scholar 

  22. Bahl, M. I., Hansen, L. H., Goesmann, A., and Sørensen, S. J. (2007) The multiple antibiotic resistance IncP-1 plasmid pKJK5 isolated from a soil environment is phylogenetically divergent from members of the previously established α, β and δ sub-groups. Plasmid. 58(1), 31–43.

    Article  CAS  PubMed  Google Scholar 

  23. Pansegrau, W., Lanka, E., Barth, P. T., Figurski, D. H., Guiney, D. G., Haas, D., Helinski, D. R., Schwab, H., Stanisich, V. A., and Thomas, C. M. (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol. 239, 623–663.

    Article  CAS  PubMed  Google Scholar 

  24. Tomita, H., Tanimoto, K., Hayakawa, S., Morinaga, K., Ezaki, K., Oshima, H., and Ike, Y. (2003) Highly conjugative pMG1-like plasmids carrying Tn1546-like transposons that encode vancomycin resistance in Enterococcus faecium. J Bacteriol. 185, 7024–7028.

    Article  CAS  Google Scholar 

  25. Sørensen, A. H., Hansen, L. H., Johannesen, E., and Sørensen, S. J. (2003) Conjugative plasmid conferring resistance to olaquindox. Antimicrob Agents Chemother. 47, 798–799.

    Article  PubMed  CAS  Google Scholar 

  26. Silver, S. (1996) Bacterial resistances to toxic metal ions – a review. Gene. 179, 9–19.

    Article  CAS  PubMed  Google Scholar 

  27. Nojiri, H., Shintani, M., and Omori, T. (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol. 64, 154–174.

    Article  CAS  PubMed  Google Scholar 

  28. Top, E. M., Holben, W. E., and Forney, L. J. (1995) Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 61, 1691–1698.

    CAS  PubMed  Google Scholar 

  29. Koehler, T. M. (2002) Bacillus anthracis genetics and virulence gene regulation. Curr Top Microbiol Immunol. 271, 143–164.

    CAS  PubMed  Google Scholar 

  30. Rychlik, I., Gregorova, D., and Hradecka, H. (2006) Distribution and function of plasmids in Salmonella enterica. Vet Microbiol. 112, 1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Turner, S. M., Scott-Tucker, A., Cooper, L. M., and Henderson, I. R. (2006) Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett. 263, 10–20.

    Article  CAS  PubMed  Google Scholar 

  32. Froehlich, B., Parkhill, J., Sanders, M., Quail, M. A., and Scott, J. R. (2005) The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol. 187, 6509–6516.

    Article  CAS  PubMed  Google Scholar 

  33. Fekete, P. Z., Schneider, G., Olasz, F., Blum-Oehler, G., Hacker, J. H., and Nagy, B. (2003) Detection of a plasmid-encoded pathogenicity island in F18+enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs. Int J Med Microbiol. 293, 287–298.

    Article  CAS  PubMed  Google Scholar 

  34. Cornelis, G. R. (2000) Molecular and cell biology aspects of plague. Proc Natl Acad Sci U S A. 97, 8778–8783.

    Article  CAS  PubMed  Google Scholar 

  35. Cornelis, G. R., and Van Gijsegem, F. (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol. 54, 735–774.

    Article  CAS  PubMed  Google Scholar 

  36. Charpentier, E., Gerbaud, G., and Courvalin, P. (1999) Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among gram-positive and gram-negative bacteria. J Bacteriol. 181, 3368–3374.

    CAS  PubMed  Google Scholar 

  37. Drønen, A., Torsvik, V., Goksøyr, J., and Top, E. (1998) Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol. 27, 381–394.

    Google Scholar 

  38. Droge, M., Pühler, A., and Selbitschka, W. (2000) Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet. 263, 471–482.

    Article  CAS  PubMed  Google Scholar 

  39. De Gelder, L., Vandecasteele, F. P., Brown, C. J., Forney, L. J., and Top, E. M. (2005) Plasmid donor affects host range of promiscuous IncP-1beta plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol. 71, 5309–5317.

    Article  PubMed  CAS  Google Scholar 

  40. Horodniceanu, T., Bouanchaud, D. H., Bieth, G., and Chabbert, Y. A. (1976) R plasmids in Streptococcus agalactiae (group B). Antimicrob Agents Chemother. 10, 795–801.

    CAS  PubMed  Google Scholar 

  41. LeBlanc, D. J., Hawley, R. J., Lee, L. N., and St Martin, E. J. (1978) “Conjugal” transfer of plasmid DNA among oral streptococci. Proc Natl Acad Sci U S A. 75, 3484–3487.

    Article  CAS  PubMed  Google Scholar 

  42. Kurenbach, B., Bohn, C., Prabhu, J., Abudukerim, M., Szewzyk, U., and Grohmann, E. (2003) Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid. 50, 86–93.

    Article  CAS  PubMed  Google Scholar 

  43. Musovic, S., Oregaard, G., Kroer, N., and Sorensen, S. J. (2006) Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol. 72, 6687–6692.

    Article  CAS  PubMed  Google Scholar 

  44. Sørensen, S. J., Bailey, M., Hansen, L. H., Kroer, N., and Wuertz, S. (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol. 3, 700–710.

    Article  PubMed  CAS  Google Scholar 

  45. Sørensen, S. J., Sørensen, A. H., Hansen, L. H., Oregaard, G., and Veal, D. (2003) Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Curr Microbiol. 47, 129–133.

    Article  PubMed  CAS  Google Scholar 

  46. Datta, N., and Hedges, R. W. (1972) Host ranges of R factors. J Gen Microbiol. 70, 453–460.

    CAS  PubMed  Google Scholar 

  47. Geisenberger, O., Ammendola, A., Christensen, B. B., Molin, S., Schleifer, K. H., and Eberl, L. (1999) Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett. 174, 9–17.

    Article  CAS  PubMed  Google Scholar 

  48. Bahl, M. I., Hansen, L. H., Licht, T. R., and Sørensen, S. J. (2007) Conjugative transfer facilitates stable maintenance of IncP-1 plasmid pKJK5 in Escherichia coli cells colonizing the gastrointestinal tract of the germfree rat. Appl Environ Microbiol. 73, 341–343.

    Article  CAS  PubMed  Google Scholar 

  49. Enne, V. I., Delsol, A. A., Roe, J. M., and Bennett, P. M. (2006) Evidence of antibiotic resistance gene silencing in Escherichia coli. Antimicrob Agents Chemother. 50, 3003–3010.

    Article  CAS  PubMed  Google Scholar 

  50. Bengtsson, G., Fossum, A., and Lindqvist, R. (2004) Persistence of plasmid RP4 in Pseudomonas putida and loss of its expression of antibiotic resistance in a groundwater microcosm. Soil Biol Biochem. 36, 999–1008.

    Article  CAS  Google Scholar 

  51. Bahl, M. I., Sørensen, S. J., and Hansen, L. H. (2004) Quantification of plasmid loss in Escherichia coli cells by use of flow cytometry. FEMS Microbiol Lett. 232, 45–49.

    Article  CAS  PubMed  Google Scholar 

  52. Turner, S. L., Bailey, M., Lilley, A. K., and Thomas, C. M. (2002) Ecological and molecular maintenance strategies of mobile genetic elements. FEMS Microbiol Ecol. 42, 177–185.

    Article  CAS  PubMed  Google Scholar 

  53. Adamczyk, M., and Jagura-Burdzy, G. (2003) Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol. 50, 425–453.

    CAS  PubMed  Google Scholar 

  54. Wada, C., and Yura, T. (1984) Control of F plasmid replication by a host gene: evidence for interaction of the mafA gene product of Escherichia coli with the mini-F incC region. J Bacteriol. 160, 1130–1136.

    CAS  PubMed  Google Scholar 

  55. Summers, D. K., Beton, C. W., and Withers, H. L. (1993) Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol. 8, 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  56. Tolmasky, M. E., Colloms, S., Blakely, G., and Sherratt, D. J. (2000) Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology. 146, 581–589.

    CAS  PubMed  Google Scholar 

  57. Bignell, C., and Thomas, C. M. (2001) The bacterial ParA-ParB partitioning proteins. J Biotechnol. 91, 1–34.

    Article  CAS  PubMed  Google Scholar 

  58. Williams, D. R., Macartney, D. P., and Thomas, C. M. (1998) The partitioning activity of the RK2 central control region requires only incC, korB and KorB-binding site O(B)3 but other KorB-binding sites form destabilizing complexes in the absence of O(B)3. Microbiology. 144, 3369–3378.

    Article  CAS  PubMed  Google Scholar 

  59. Siddique, A., and Figurski, D. H. (2002) The active partition gene incC of IncP plasmids is required for stable maintenance in a broad range of hosts. J Bacteriol. 184, 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  60. Yamaichi, Y., and Niki, H. (2000) Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A. 97, 14656–14661.

    Article  CAS  PubMed  Google Scholar 

  61. Lewis, R. A., Bignell, C. R., Zeng, W., Jones, A. C., and Thomas, C. M. (2002) Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology. 148, 537–548.

    CAS  PubMed  Google Scholar 

  62. Godfrin-Estevenon, A. M., Pasta, F., and Lane, D. (2002) The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol. 43, 39–49.

    Article  CAS  PubMed  Google Scholar 

  63. Yamaichi, Y., Fogel, M. A., and Waldor, M. K. (2006) par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci U S A.

    Google Scholar 

  64. Fogel, M. A., and Waldor, M. K. (2005) Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol Microbiol. 55, 125–136.

    Article  CAS  PubMed  Google Scholar 

  65. Gerdes, K., Moller-Jensen, J., and Bugge Jensen, R. (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol. 37, 455–466.

    Article  CAS  PubMed  Google Scholar 

  66. Pandey, D. P., and Gerdes, K. (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976.

    Article  CAS  PubMed  Google Scholar 

  67. Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Umayam, L., Gill, S. R., Nelson, K. E., Read, T. D., Tettelin, H., Richardson, D., Ermolaeva, M. D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., McDonald, L., Utterback, T., Fleishmann, R. D., Nierman, W. C., White, O., Salzberg, S. L., Smith, H. O., Colwell, R. R., Mekalanos, J. J., Venter, J. C., and Fraser, C. M. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 406, 477–483.

    Article  CAS  PubMed  Google Scholar 

  68. Cooper, T. F., and Heinemann, J. A. (2000) Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci U S A. 97, 12643–12648.

    Article  CAS  PubMed  Google Scholar 

  69. Jaffe, A., Ogura, T., and Hiraga, S. (1985) Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol. 163, 841–849.

    CAS  PubMed  Google Scholar 

  70. Ogura, T., and Hiraga, S. (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci U S A. 80, 4784–4788.

    Article  CAS  PubMed  Google Scholar 

  71. Bernard, P., and Couturier, M. (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol. 226, 735–745.

    Article  CAS  PubMed  Google Scholar 

  72. Ellington, M. J., and Woodford, N. (2006) Fluoroquinolone resistance and plasmid addiction systems: self-imposed selection pressure? J Antimicrob Chemother. 57, 1026–1029.

    Article  CAS  PubMed  Google Scholar 

  73. Tam, J. E., and Kline, B. C. (1989) The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins. Mol Gen Genet. 219, 26–32.

    Article  CAS  PubMed  Google Scholar 

  74. Tam, J. E., and Kline, B. C. (1989) Control of the ccd operon in plasmid F. J Bacteriol. 171, 2353–2360.

    CAS  PubMed  Google Scholar 

  75. Afif, H., Allali, N., Couturier, M., and Van Melderen, L. (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol. 41, 73–82.

    Article  CAS  PubMed  Google Scholar 

  76. Van Melderen, L., Bernard, P., and Couturier, M. (1994) Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol Microbiol. 11, 1151–1157.

    Article  PubMed  Google Scholar 

  77. Bernard, P., Gabant, P., Bahassi, E. M., and Couturier, M. (1994) Positive-selection vectors using the F plasmid ccdB killer gene. Gene. 148, 71–74.

    Article  CAS  PubMed  Google Scholar 

  78. Jiang, Y., Pogliano, J., Helinski, D. R., and Konieczny, I. (2002) ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol. 44, 971–979.

    Article  CAS  PubMed  Google Scholar 

  79. Bravo, A., de Torrontegui, G., and Diaz, R. (1987) Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid. Mol Gen Genet. 210, 101–110.

    Article  CAS  PubMed  Google Scholar 

  80. Tsuchimoto, S., Ohtsubo, H., and Ohtsubo, E. (1988) Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J Bacteriol. 170, 1461–1466.

    CAS  PubMed  Google Scholar 

  81. Ruiz-Echevarria, M. J., Gimenez-Gallego, G., Sabariegos-Jareno, R., and Diaz-Orejas, R. (1995) Kid, a small protein of the parD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. J Mol Biol. 247, 568–577.

    Article  CAS  PubMed  Google Scholar 

  82. Lehnherr, H., Maguin, E., Jafri, S., and Yarmolinsky, M. B. (1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol. 233, 414–428.

    Article  CAS  PubMed  Google Scholar 

  83. Santos-Sierra, S., Giraldo, R., and Diaz-Orejas, R. (1997) Functional interactions between homologous conditional killer systems of plasmid and chromosomal origin. FEMS Microbiol Lett. 152, 51–56.

    Article  CAS  PubMed  Google Scholar 

  84. Gerdes, K., Rasmussen, P. B., and Molin, S. (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A. 83, 3116–3120.

    Article  CAS  PubMed  Google Scholar 

  85. Gerdes, K., Bech, F. W., Jorgensen, S. T., Lobner-Olesen, A., Rasmussen, P. B., Atlung, T., Boe, L., Karlstrom, O., Molin, S., and von Meyenburg, K. (1986) Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. Embo J. 5, 2023–2029.

    CAS  PubMed  Google Scholar 

  86. Thisted, T., and Gerdes, K. (1992) Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J Mol Biol. 223, 41–54.

    Article  CAS  PubMed  Google Scholar 

  87. Gerdes, K., Thisted, T., and Martinussen, J. (1990) Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol Microbiol. 4, 1807–1818.

    Article  CAS  PubMed  Google Scholar 

  88. Thisted, T., Sorensen, N. S., and Gerdes, K. (1995) Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding. J Mol Biol. 247, 859–873.

    Article  CAS  PubMed  Google Scholar 

  89. Pecota, D. C., Osapay, G., Selsted, M. E., and Wood, T. K. (2003) Antimicrobial properties of the Escherichia coli R1 plasmid host killing peptide. J Biotechnol. 100, 1–12.

    Article  CAS  PubMed  Google Scholar 

  90. Faridani, O. R., Nikravesh, A., Pandey, D. P., Gerdes, K., and Good, L. (2006) Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res. 34, 5915–5922.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2007) REBASE – enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 35, D269–270.

    Article  CAS  PubMed  Google Scholar 

  92. Kulakauskas, S., Lubys, A., and Ehrlich, S. D. (1995) DNA restriction-modification systems mediate plasmid maintenance. J Bacteriol. 177, 3451–3454.

    CAS  PubMed  Google Scholar 

  93. Ichige, A., and Kobayashi, I. (2005) Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems. J Bacteriol. 187, 6612–6621.

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi, I. (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756.

    Article  CAS  PubMed  Google Scholar 

  95. Sia, E. A., Roberts, R. C., Easter, C., Helinski, D. R., and Figurski, D. H. (1995) Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J Bacteriol. 177, 2789–2797.

    CAS  PubMed  Google Scholar 

  96. Bahl, M. I., Hansen, L. H., and Sørensen, S. J. (2007) Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations. FEMS Microbiol Lett. 266, 250–256.

    Article  CAS  PubMed  Google Scholar 

  97. Potera, C. (1996) Biofilms invade microbiology. Science. 273, 1795–1797.

    Article  CAS  PubMed  Google Scholar 

  98. Ghigo, J. M. (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature. 412, 442–445.

    Article  CAS  PubMed  Google Scholar 

  99. Burmølle, M., Bahl, M. I., Jensen, L. B., Sørensen, S. J., and Hansen, L. H. (2008) Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154, 187–195.

    Article  PubMed  CAS  Google Scholar 

  100. Hirota, Y. (1960) The effect of acridine dyes on mating type factors in Escherichia coli. Proc Natl Acad Sci U S A. 46, 57–64.

    Article  CAS  PubMed  Google Scholar 

  101. Molnar, A., Amaral, L., and Molnar, J. (2003) Antiplasmid effect of promethazine in mixed bacterial cultures. Int J Antimicrob Agents. 22, 217–222.

    Article  CAS  PubMed  Google Scholar 

  102. El-Mansi, M., Anderson, K. J., Inche, C. A., Knowles, L. K., and Platt, D. J. (2000) Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate. Research in Microbiology. 151, 201–208.

    Article  CAS  PubMed  Google Scholar 

  103. Brandi, L., Falconi, M., and Ripa, S. (2000) Plasmid curing effect of trovafloxacin. FEMS Microbiol Lett. 184, 297–302.

    Article  CAS  PubMed  Google Scholar 

  104. Stojiljkovic, I., Trgovcevic, Z., and Salajsmic, E. (1991) Tn5-Rpsl – a new derivative of transposon Tn5 useful in plasmid curing. Gene. 99, 101–104.

    Article  CAS  PubMed  Google Scholar 

  105. Imre, A., Olasz, F., Kiss, J., and Nagy, B. (2006) A novel transposon-based method for elimination of large bacterial plasmids. Plasmid. 55, 235–241.

    Article  CAS  PubMed  Google Scholar 

  106. Siemering, K. R., Praszkier, J., and Pittard, A. J. (1993) Interaction between the antisense and target RNAs involved in the regulation of Incb plasmid replication. J Bacteriol. 175, 2895–2906.

    CAS  PubMed  Google Scholar 

  107. DeNap, J. C. B., Thomas, J. R., Musk, D. J., and Hergenrother, P. J. (2004) Combating drug-resistant bacteria: Small molecule mimics of plasmid incompatibility as antiplasmid compounds. J Am Chem Soc. 126, 15402–15404.

    Article  CAS  PubMed  Google Scholar 

  108. Dahlberg, C., and Chao, L. (2003) Amelioration of the cost of conjugative plasmid carriage in Escherichia coli K12. Genetics. 165, 1641–1649.

    CAS  PubMed  Google Scholar 

  109. Bouma, J. E., and Lenski, R. E. (1988) Evolution of a bacteria/plasmid association. Nature. 335, 351–352.

    Article  CAS  PubMed  Google Scholar 

  110. Morrison, P. F., and Chattoraj, D. K. (2004) Replication of a unit-copy plasmid F in the bacterial cell cycle: a replication rate function analysis. Plasmid. 52, 13–30.

    Article  CAS  PubMed  Google Scholar 

  111. Galtier, N., and Lobry, J. R. (1997) Relationships between genomic \({\rm G}+{\rm C}\) content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol. 44, 632–636.

    Article  CAS  PubMed  Google Scholar 

  112. Rocha, E. P., and Danchin, A. (2002) Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294.

    Article  CAS  PubMed  Google Scholar 

  113. van Passel, M. W., Bart, A., Luyf, A. C., van Kampen, A. H., and van der Ende, A. (2006) Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics. 7, 26.

    Article  PubMed  CAS  Google Scholar 

  114. Rawlings, D. E., and Tietze, E. (2001) Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev. 65, 481–496.

    Article  CAS  PubMed  Google Scholar 

  115. Wilkins, B. M., Chilley, P. M., Thomas, A. T., and Pocklington, M. J. (1996) Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J Mol Biol. 258, 447–456.

    Article  CAS  PubMed  Google Scholar 

  116. Korona, R., Korona, B., and Levin, B. R. (1993) Sensitivity of naturally occurring coliphages to type I and type II restriction and modification. J Gen Microbiol. 139 Pt 6, 1283–1290.

    CAS  PubMed  Google Scholar 

  117. Clewell, D. B., and Flannagan, S. E. (1993) in Bacterial Conjugation (Clewell, D. B., Ed.), Plenum Press, New York.

    Google Scholar 

  118. Wilkins, B. M. (2002) Plasmid promiscuity: meeting the challenge of DNA immigration control. Environ Microbiol. 4, 495–500.

    Article  CAS  PubMed  Google Scholar 

  119. Vedler, E., Vahter, M., and Heinaru, A. (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol. 186, 7161–7174.

    Article  CAS  PubMed  Google Scholar 

  120. Johnson, T. J., Siek, K. E., Johnson, S. J., and Nolan, L. K. (2005) DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrob Agents Chemother. 49, 4681–4688.

    Article  CAS  PubMed  Google Scholar 

  121. Gilmour, M. W., Thomson, N. R., Sanders, M., Parkhill, J., and Taylor, D. E. (2004) The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid. 52, 182–202.

    Article  CAS  PubMed  Google Scholar 

  122. Roberts, M. C. (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 19, 1–24.

    Article  CAS  PubMed  Google Scholar 

  123. Fuqua, W. C., Winans, S. C., and Greenberg, E. P. (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 176, 269–275.

    CAS  PubMed  Google Scholar 

  124. Hwang, I., Li, P. L., Zhang, L., Piper, K. R., Cook, D. M., Tate, M. E., and Farrand, S. K. (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci U S A. 91, 4639–4643.

    Article  CAS  PubMed  Google Scholar 

  125. Chandler, J. R., and Dunny, G. M. (2004) Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides. 25, 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  126. Kozlowicz, B. K., Dworkin, M., and Dunny, G. M. (2006) Pheromone-inducible conjugation in Enterococcus faecalis: a model for the evolution of biological complexity? Int J Med Microbiol. 296, 141–147.

    Article  CAS  PubMed  Google Scholar 

  127. Salyers, A. A., Shoemaker, N. B., Stevens, A. M., and Li, L. Y. (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 59, 579–590.

    CAS  PubMed  Google Scholar 

  128. Showsh, S. A., and Andrews, R. E., Jr. (1992) Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid. 28, 213–224.

    Article  CAS  PubMed  Google Scholar 

  129. Bahl, M. I., Sørensen, S. J., Hansen, L. H., and Licht, T. R. (2004) Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol. 70, 758–764.

    Article  CAS  PubMed  Google Scholar 

  130. Su, Y. A., He, P., and Clewell, D. B. (1992) Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 36, 769–778.

    CAS  PubMed  Google Scholar 

  131. Khalil, T. A., and Gealt, M. A. (1987) Temperature, pH, and cations affect the ability of Escherichia coli to mobilize plasmids in L broth and synthetic wastewater. Can J Microbiol. 33, 733–737.

    Article  CAS  PubMed  Google Scholar 

  132. Normander, B., Christensen, B. B., Molin, S., and Kroer, N. (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl Environ Microbiol. 64, 1902–1909.

    CAS  PubMed  Google Scholar 

  133. Molin, S., and Tolker-Nielsen, T. (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol. 14, 255–261.

    Article  CAS  PubMed  Google Scholar 

  134. Linares, J. F., Gustafsson, I., Baquero, F., and Martinez, J. L. (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 103, 19484–19489.

    Article  CAS  PubMed  Google Scholar 

  135. Bergstrom, C. T., Lipsitch, M., and Levin, B. R. (2000) Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics. 155, 1505–1519.

    CAS  PubMed  Google Scholar 

  136. Hansen, S. K., Rainey, P. B., Haagensen, J. A., and Molin, S. (2007) Evolution of species interactions in a biofilm community. Nature. 445, 533–536.

    Article  CAS  PubMed  Google Scholar 

  137. Burmølle, M., Webb, J. S., Rao, D., Hansen, L. H., Sørensen, S. J., and Kjelleberg, S. (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 72, 3916–3923.

    Article  PubMed  CAS  Google Scholar 

  138. Parsek, M. R., and Greenberg, E. P. (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33.

    Article  CAS  PubMed  Google Scholar 

  139. Hausner, M., and Wuertz, S. (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol. 65, 3710–3713.

    CAS  PubMed  Google Scholar 

  140. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., and Smith, H. O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science. 304, 66–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bahl, M.I., Hansen, L.H., Sørensen, S.J. (2009). Persistence Mechanisms of Conjugative Plasmids. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics