Skip to main content
Book cover

Mitosis pp 113–134Cite as

Automated Live Microscopy to Study Mitotic Gene Function in Fluorescent Reporter Cell Lines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 545))

Abstract

Fluorescence live microscopy is a powerful technique to study complex cellular dynamics such as cell division. The availability of fluorescent markers based on GFP fusion proteins for virtually any cellular structure allows efficient visualization of specific processes, and the combination of different fluorophores can be used to study their coordination. In this chapter, we present methods for automated live cell microscopy to study mitotic gene function systematically and in high throughput. In particular, we provide protocols for efficient generation of fluorescent reporter cell lines stably expressing combinations of cellular markers, and provide detailed guidelines for optimizing imaging protocols for automated long-term live microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gerlich, D., Beaudouin, J., Gebhard, M., Ellenberg, J., and Eils, R. (2001) Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells. Nat Cell Biol 3, 852–5.

    Article  PubMed  CAS  Google Scholar 

  2. Gerlich, D. and Ellenberg, J. (2003) 4D imaging to assay complex dynamics in live specimens. Nat Cell Biol Suppl, S14–9.

    PubMed  Google Scholar 

  3. Dailey, M.E., Manders, E., Soll, D.R., and Terasaki, M. (2006) Confocal Microscopy of Living Cells, in Handbook of Biological Confocal Microscopy (Pawley, J.B., ed.), Springer, New York, NY, pp. 381–403.

    Google Scholar 

  4. Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–52.

    Article  PubMed  CAS  Google Scholar 

  5. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., and Ellenberg, J. (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3, 385–90.

    Article  PubMed  CAS  Google Scholar 

  6. Kanda, T., Sullivan, K.F., and Wahl, G.M. (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8, 377–85.

    Article  PubMed  CAS  Google Scholar 

  7. Snapp, E.L., Hegde, R.S., Francolini, M., Lombardo, F., Colombo, S., Pedrazzini, E., Borgese, N., and Lippincott-Schwartz, J. (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163, 257–69.

    Article  PubMed  CAS  Google Scholar 

  8. Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y., and Remington, S.J. (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–47.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99, 7877–82.

    Article  PubMed  CAS  Google Scholar 

  10. Stepanova, T., Slemmer, J., Hoogenraad, C.C., Lansbergen, G., Dortland, B., De Zeeuw, C.I., Grosveld, F., van Cappellen, G., Akhmanova, A., and Galjart, N. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 23, 2655–64.

    PubMed  CAS  Google Scholar 

  11. Piel, M., Meyer, P., Khodjakov, A., Rieder, C.L., and Bornens, M. (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149, 317–30.

    Article  PubMed  CAS  Google Scholar 

  12. Sugimoto, K., Fukuda, R., and Himeno, M. (2000) Centromere/kinetochore localization of human centromere protein A (CENP-A) exogenously expressed as a fusion to green fluorescent protein. Cell Struct Funct 25, 253–61.

    Article  PubMed  CAS  Google Scholar 

  13. Zacharias, D.A., Violin, J.D., Newton, A.C., and Tsien, R.Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–6.

    Article  PubMed  CAS  Google Scholar 

  14. Leonhardt, H., Rahn, H.P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D., and Cardoso, M.C. (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149, 271–80.

    Article  PubMed  CAS  Google Scholar 

  15. Zaal, K.J., Smith, C.L., Polishchuk, R.S., Altan, N., Cole, N.B., Ellenberg, J., Hirschberg, K., Presley, J.F., Roberts, T.H., Siggia, E., Phair, R.D., and Lippincott-Schwartz, J. (1999) Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601.

    Article  PubMed  CAS  Google Scholar 

  16. Terasaki, M., Jaffe, L.A., Hunnicutt, G.R., and Hammer, J.A., 3rd (1996) Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein. Dev Biol 179, 320–8.

    Article  PubMed  CAS  Google Scholar 

  17. Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R.Y., and Pozzan, T., et al. (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6, 183–8.

    Article  PubMed  CAS  Google Scholar 

  18. Muhlhausser, P. and Kutay, U. (2007) An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Biol 178, 595–610.

    Article  PubMed  CAS  Google Scholar 

  19. Rao, P.N. and Engelberg, J. (1965) Hela cells: Effects of temperature on the life cycle. Science 148, 1092–4.

    Article  PubMed  CAS  Google Scholar 

  20. Rieder, C.L. and Cole, R.W. (2002) Cold-shock and the Mammalian cell cycle. Cell Cycle 1, 169–75.

    Article  PubMed  CAS  Google Scholar 

  21. Waters, J.C. (2007) Live-cell fluorescence imaging. Methods Cell Biol 81, 115–40.

    Article  PubMed  CAS  Google Scholar 

  22. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H. (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl, S7–14.

    PubMed  Google Scholar 

  23. Swedlow, J.R. (2007) Quantitative fluorescence microscopy and image deconvolution. Methods Cell Biol 81, 447–65.

    Article  PubMed  CAS  Google Scholar 

  24. Abramowitz, M., Spring, K.R., Keller, H.E., and Davidson, M.W. (2002) Basic principles of microscope objectives. Biotechniques 33, 772–4, 776–8, 780–1.

    PubMed  CAS  Google Scholar 

  25. Keller, H.E. (2006) Objective lenses for confocal microscopy, in Handbook of Biological Confocal Microscopy (Pawley, J.B., ed.), Springer, New York, pp. 145–161.

    Google Scholar 

  26. Inoué, S. and Spring, K. (1986) Video Microscopy. Plenum Press, New York.

    Google Scholar 

  27. Rabut, G. and Ellenberg, J. (2004) Automatic real-time three-dimensional cell tracking by fluorescence microscopy. J Microsc 216, 131–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Steigemann for helpful discussions and critical reading of this manuscript. We thank M. Held for software programming and S. Maar for technical help. We thank G. Csucs and J. Kusch from the light microscopy center for technical support; Toni Lehmann for making LabTek stage holders, and technical assistance; R. Y. Tsien for mRFP, mCherry, and MyrPalm-EYFP; J. Lippincott-Schwartz for mEGFP; J. Ellenberg for H2B-mRFP; and S. Narumiya for HeLa “Kyoto” cells. This work was supported by a European Young Investigator (EURYI) award of the European Science Foundation to D.G., and a Roche Ph.D. fellowship to M.S. M. S. is a fellow of the Life Science Zurich Graduate School, Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmitz, M.H., Gerlich, D.W. (2009). Automated Live Microscopy to Study Mitotic Gene Function in Fluorescent Reporter Cell Lines. In: McAinsh, A. (eds) Mitosis. Methods in Molecular Biology, vol 545. Humana Press. https://doi.org/10.1007/978-1-60327-993-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-993-2_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-992-5

  • Online ISBN: 978-1-60327-993-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics