Skip to main content

Discovering Biological Networks from Diverse Functional Genomic Data

  • Protocol
  • First Online:
Protein Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 563))

Abstract

Recent advances in biotechnology have produced a wealth of genomic data, which capture a variety of complementary cellular features. While these data promise to yield key insights into molecular biology, much of the available information remains underutilized because of the lack of scalable approaches for integrating signals across large, diverse data sets. A proper framework for capturing these numerous snapshots of complementary phenomena under a variety of conditions can provide the holistic view necessary for developing precise systems-level hypotheses.

Here we describe bioPIXIE, a system for combining information from diverse genomic data sets to predict biological networks. bioPIXIE utilizes a Bayesian framework for probabilistic integration of several high-throughput genomic data types including gene expression, protein–protein interactions, genetic interactions, protein localization, and sequence data to predict biological networks. The main purpose of the system is to support user-driven exploration through the inferred functional network, which is enabled by a public, web-based interface. We describe the features and supporting methods of this integration and discovery framework and present case examples where bioPIXIE has been used to generate specific, testable hypotheses for Saccharomyces cerevisiae, many of which have been confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng, M., F. Sun and T. Chen. 2003. Assessment of the reliability of protein–protein interactions and protein function prediction. Pac Symp Biocomput 140–151.

    Google Scholar 

  2. Bader, J.S., A. Chaudhuri, J.M. Rothberg and J. Chant. 2004. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22:78–85.

    Article  PubMed  CAS  Google Scholar 

  3. Sprinzak, E., S. Sattath and H. Margalit. 2003. How reliable are experimental protein–protein interaction data? J Mol Biol 327:919–923.

    Article  PubMed  CAS  Google Scholar 

  4. Barutcuoglu, Z., R.E. Schapire and O.G. Troyanskaya. 2006. Hierarchical multi-label prediction of gene function. Bioinformatics 22:830–836.

    Article  PubMed  CAS  Google Scholar 

  5. Lanckriet, G.R., M. Deng, N. Cristianini, M.I. Jordan and W.S. Noble. 2004. Kernel-based data fusion and its application to protein function prediction in yeast. Pac Symp Biocomput 300–311.

    Google Scholar 

  6. Letovsky, S. and S. Kasif. 2003. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19 Suppl 1:i197–i204.

    Article  PubMed  Google Scholar 

  7. von Mering, C., M. Huynen, D. Jaeggi, S. Schmidt, P. Bork and B. Snel. 2003. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261.

    Article  Google Scholar 

  8. Lee, I., S.V. Date, A.T. Adai and E.M. Marcotte. 2004. A probabilistic functional network of yeast genes. Science 306:1555–1558.

    Article  PubMed  CAS  Google Scholar 

  9. Jansen, R., H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung, A. Emili, M. Snyder, et al. 2003. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302:449–453.

    Article  PubMed  CAS  Google Scholar 

  10. Jaimovich, A., G. Elidan, H. Margalit and N. Friedman. 2005. Towards an integrated protein–protein interaction network. Research in Computational Molecular Biology, Proceedings Cambridge, MA, USA, 3500:14–38.

    Article  CAS  Google Scholar 

  11. Myers, C.L., D. Robson, A. Wible, M.A. Hibbs, C. Chiriac, C.L. Theesfeld, K. Dolinski and O.G. Troyanskaya. 2005. Discovery of biological networks from diverse functional genomic data. Genome Biol 6:R114.

    Article  PubMed  Google Scholar 

  12. Murali, T.M., C.J. Wu and S. Kasif. 2006. The art of gene function prediction. Nat Biotechnol 24:1474–1475; author reply 1475–1476.

    Article  PubMed  CAS  Google Scholar 

  13. Druzdzel, M. 1999. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A Development Environment for Graphical Decision-Theoretic Models (Intelligent Systems Demonstration). pp. 902-903. In National Conference on Artificial Intelligence (AAAI-99). AAAI Press/The MIT Press, Menlo Park, CA.

    Google Scholar 

  14. Web site. Graphviz Home Page. In http://www.graphviz.org

  15. Eddy, S.R. 2004. What is Bayesian statistics? Nat Biotechnol 22:1177–1178.

    Article  PubMed  CAS  Google Scholar 

  16. Myers, C.L., D.R. Barrett, M.A. Hibbs, C. Huttenhower and O.G. Troyanskaya. 2006. Finding function: evaluation methods for functional genomic data. BMC Genomics 7:187.

    Article  PubMed  Google Scholar 

  17. Ball, C.A., K. Dolinski, S.S. Dwight, M.A. Harris, L. Issel-Tarver, A. Kasarskis, C.R. Scafe, G. Sherlock, et al. 2000. Integrating functional genomic information into the Saccharomyces genome database. Nucleic Acids Res 28:77–80.

    Article  PubMed  CAS  Google Scholar 

  18. Schauber, C., L. Chen, P. Tongaonkar, I. Vega, D. Lambertson, W. Potts and K. Madura. 1998. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718.

    Article  PubMed  CAS  Google Scholar 

  19. Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29.

    Article  PubMed  CAS  Google Scholar 

  20. Boyle, E.I., S. Weng, J. Gollub, H. Jin, D. Botstein, J.M. Cherry and G. Sherlock. 2004. GO:TermFinder – open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715.

    Article  PubMed  CAS  Google Scholar 

  21. Miles, J. and T. Formosa. 1992. Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol Cell Biol 12:5724–5735.

    PubMed  CAS  Google Scholar 

  22. Fisher, R.A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10:507–521.

    Google Scholar 

  23. Kloster, M., C. Tang and N.S. Wingreen. 2005. Finding regulatory modules through large-scale gene-expression data analysis. Bioinformatics 21:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  24. Myers, C.L. and O.G. Troyanskaya. 2007. Context-sensitive data integration and prediction of biological networks. Bioinformatics 23:2322–2330.

    Article  PubMed  CAS  Google Scholar 

  25. Huh, W.K., J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman and E.K. O’Shea. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691.

    Article  PubMed  CAS  Google Scholar 

  26. Friedman, N., D. Geiger and M. Goldszmidt. 1997. Bayesian network classifiers. Machine Learning 29:131–163.

    Article  Google Scholar 

  27. Prakash, S. and L. Prakash. 2000. Nucleotide excision repair in yeast. Mutat Res 451:13–24.

    Article  PubMed  CAS  Google Scholar 

  28. van Laar, T., A.J. van der Eb and C. Terleth. 2002. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 499:53–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Myers, C.L., Chiriac, C., Troyanskaya, O.G. (2009). Discovering Biological Networks from Diverse Functional Genomic Data. In: Nikolsky, Y., Bryant, J. (eds) Protein Networks and Pathway Analysis. Methods in Molecular Biology, vol 563. Humana Press. https://doi.org/10.1007/978-1-60761-175-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-175-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-174-5

  • Online ISBN: 978-1-60761-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics