Skip to main content

The Role of Paraoxonase 1 in the Detoxification of Homocysteine Thiolactone

  • Conference paper
  • First Online:
Paraoxonases in Inflammation, Infection, and Toxicology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 660))

Abstract

The thioester homocysteine (Hcy)-thiolactone, product of an error-editing reaction in protein biosynthesis, forms when Hcy is mistakenly selected by methionyl-tRNA synthetase. Accumulating evidence suggests that Hcy-thiolactone plays an important role in atherothrombosis. The thioester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues, which impairs or alters protein function and has pathophysiological consequences including activation of an autoimmune response and enhanced thrombosis. Mammalian organisms, including human, have evolved the ability to eliminate Hcy-thiolactone. One such mechanism involves paraoxonase 1 (PON1), which has the ability to hydrolyze Hcy-thiolactone. This article outlines Hcy-thiolactone pathobiology and reviews evidence documenting the role of PON1 in minimizing Hcy-thiolactone and N-Hcy-protein accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beltowski J, Wojcicka G, Jamroz A. Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atherosclerosis. 2003 Sep;170(1):21–29.

    Article  CAS  PubMed  Google Scholar 

  • Beltowski J, Wojcicka G, Jamroz-Wisniewska A, Marciniak A. Liver X receptor agonist, T0901317, normalizes plasma PON1 activity and reduces protein homocysteinylation in rats with experimental hyperleptinemia. 3rd International Conference on Paraoxonases; 2008; Los Angeles, CA. 2008.

    Google Scholar 

  • Bogdanski P, Pupek-Musialik D, Dytfeld J, Lacinski M, Jablecka A, Jakubowski H. Plasma homocysteine is a determinant of tissue necrosis factor-alpha in hypertensive patients. Biomed Pharmacother. 2007 Dec 3;62:360–365

    PubMed  Google Scholar 

  • Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006 Apr 13;354(15):1578–1588.

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H. Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. Faseb J. 2007 Jun;21(8):1707–1713.

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Jakubowski H. The determination of homocysteine-thiolactone in human plasma. Anal Biochem. 2005 Feb 15;337(2):271–277.

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Jakubowski H. Urinary excretion of homocysteine-thiolactone in humans. Clin Chem. 2005 Feb;51(2):408–415.

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Lewington S, Sherliker P, Armitage J. Effects of B-vitamins on plasma homocysteine concentrations and on risk of cardiovascular disease and dementia. Curr Opin Clin Nutr Metab Care. 2007 Jan;10(1):32–39.

    Article  PubMed  Google Scholar 

  • Domagała TB, Łacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy-le-grand). 2006;52(5):4–10.

    Google Scholar 

  • Donahue S, Struman JA, Gaull G. Arteriosclerosis due to homocyst(e)inemia. Failure to reproduce the model in weanling rabbits. Am J Pathol. 1974 Nov;77(2):167–163.

    CAS  PubMed  Google Scholar 

  • Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007 Jan 20;369(9557):208–216.

    Article  CAS  PubMed  Google Scholar 

  • Endo N, Nishiyama K, Otsuka A, Kanouchi H, Taga M, Oka T. Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr. 2006 Jun;95(6):1088–1093.

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Bacchetti T, Marotti E, Curatola G. Effect of homocysteinylation on human high-density lipoproteins: a correlation with paraoxonase activity. Metabolism. 2003 Feb;52(2):146–151.

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Bacchetti T, Moroni C, Vignini A, Nanetti L, Curatola G. Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. J Cell Biochem. 2004 May 15;92(2):351–360.

    Article  CAS  PubMed  Google Scholar 

  • Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem. 2004 Mar 19;279(12):10864–10871.

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Lu J, Yang G, Dou J, Mu Y, Meng J, et al. Plasma homocysteine thiolactone associated with risk of macrovasculopathy in Chinese patients with type 2 diabetes mellitus. Adv Ther. 2008 Sep;25(9):914–924.

    Article  CAS  PubMed  Google Scholar 

  • Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543.

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem. 2003 Aug 8;278(32):30317–30327.

    Article  CAS  PubMed  Google Scholar 

  • Huang RF, Huang SM, Lin BS, Wei JS, Liu TZ. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci. 2001 May 11;68(25):2799–2811.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. Embo J. 1991 Mar;10(3):593–598.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997 Jan 17;272(3):1935–1942.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. Faseb J. 1999 Dec;13(15):2277–2283.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000 Feb;130(2S Suppl):377S–381S.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000 Feb 11;275(6):3957–3962.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. Biosynthesis and reactions of homocysteine thiolactone. In: Jacobson D, Carmel R (eds.). Homocysteine in Health and Disease. Cambridge, UK: Cambridge University Press; 2001. 21–31.

    Google Scholar 

  • Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr. 2001 Nov;131(11):2983S–2987S.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. Protein N-homocysteinylation: implications for atherosclerosis. Biomed Pharmacother. 2001 Oct;55(8):443–447.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002 Sep 1;308(1):112–119.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002 Aug 23;277(34):30425–30428.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004 Feb;61(4):470–487.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. Accuracy of aminoacyl-tRNA synthetases: Proofreading of amino acids. In: Ibba M, Francklyn C, Cusack S (eds.). The Aminoacyl-tRNA Synthetases. Georgetown, TX: Landes Bioscience/Eurekah.com 2005. 384–396.

    Google Scholar 

  • Jakubowski H. Anti-N-homocysteinylated protein autoantibodies and cardiovascular disease. Clin Chem Lab Med. 2005;43(10):1011–1014.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. tRNA Synthetase Editing of Amino Acids. Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd; 2005. p. http://www.els.net/doi:10.1038/npg.els.0003933.

    Google Scholar 

  • Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006 Jun;136(6 Suppl):1741S–1749S.

    CAS  PubMed  Google Scholar 

  • Jakubowski H. The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med. 2007;45(12):1704–1716.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. New method for the determination of protein N-linked homocysteine. Anal Biochem. 2008 Sep 15;380(2):257–261.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Ambrosius WT, Pratt JH. Genetic determinants of homocysteine thiolactonase activity in humans: implications for atherosclerosis. FEBS Lett. 2001 Feb 23;491(1–2):35–39.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Boers GH, Strauss KA. Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J. 2008;22:4071–4076.

    Google Scholar 

  • Jakubowski H, Goldman E. Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett. 1993 Feb 15;317(3):237–240.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000 Jul 7;87(1):45–51.

    CAS  PubMed  Google Scholar 

  • Jarvik GP, Rozek LS, Brophy VH, Hatsukami TS, Richter RJ, Schellenberg GD, et al. Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1(192) or PON1(55) genotype. Arterioscler Thromb Vasc Biol. 2000 Nov;20(11):2441–2447.

    CAS  PubMed  Google Scholar 

  • Kamudhamas A, Pang L, Smith SD, Sadovsky Y, Nelson DM. Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am J Obstet Gynecol. 2004 Aug;191(2):563–571.

    Article  CAS  PubMed  Google Scholar 

  • Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F. Comparative study on in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem. 2006 Oct;291(1-2):119–126.

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, et al. The molecular basis of cystathionine beta-synthase deficiency in Dutch patients with homocystinuria: effect of CBS genotype on biochemical and clinical phenotype and on response to treatment. Am J Hum Genet. 1999 Jul;65(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  • Lacinski M, Skorupski W, Cieslinski A, Sokolowska J, Trzeciak WH, Jakubowski H. Determinants of homocysteine-thiolactonase activity of the paraoxonase-1 (PON1) protein in humans. Cell Mol Biol (Noisy-le-grand). 2004 Dec;50(8):885–893.

    CAS  Google Scholar 

  • Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem. 2003 Sep;36(6):431–441.

    Article  Google Scholar 

  • Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005 Aug;3(8):1646–1654.

    Article  CAS  PubMed  Google Scholar 

  • Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006 Feb;83(2):456S–4560S.

    CAS  PubMed  Google Scholar 

  • Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem. 1997 Dec 19;272(51):32370–32377.

    Article  CAS  PubMed  Google Scholar 

  • Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006 Apr 13;354(15):1567–1577.

    Article  CAS  PubMed  Google Scholar 

  • Maestro de las Casas C, Epeldegui M, Tudela C, Varela-Moreiras G, Perez-Miguelsanz J. High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Res A Clin Mol Teratol. 2003 Jan;67(1):35–40.

    Google Scholar 

  • McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969 Jul;56(1):111–128.

    CAS  PubMed  Google Scholar 

  • Mercie P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, et al. Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis. 2000 Nov;5(5):403–411.

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Krauss JP. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW et al. (eds.). The metabolic and molecular bases of inherited disease. 8th ed. New York: Mc Graw-Hill; 2001. 2007–2056.

    Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985 Jan;37(1):1–31.

    CAS  PubMed  Google Scholar 

  • Najib S, Sanchez-Margalet V. Homocysteine thiolactone inhibits insulin-stimulated DNA and protein synthesis: possible role of mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3 (GSK-3) and p70 S6K phosphorylation. J Mol Endocrinol. 2005 Feb;34(1):119–126.

    Article  CAS  PubMed  Google Scholar 

  • Naruszewicz M, Olszewski AJ, Mirkiewicz E, McCully KS. Thiolation of low density lipoproteins by homocysteine thiolactone causes increased aggregation and altered interaction with cultured macrophages. Nutr Metab Cardiovasc Dis. 1994;4:70–77.

    CAS  Google Scholar 

  • Perla-Kajan J, Marczak L, Kajan L, Skowronek P, Twardowski T, Jakubowski H. Modification by homocysteine thiolactone affects redox status of cytochrome c. Biochemistry. 2007 May 29;46(21):6225–6231.

    Article  CAS  PubMed  Google Scholar 

  • Perla-Kajan J, Stanger O, Luczak M, Ziolkowska A, Malendowicz LK, Twardowski T, et al. Immunohistochemical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother. 2008 May 2;62(7):473–479.

    Article  CAS  PubMed  Google Scholar 

  • Robert K, Chasse JF, Santiard-Baron D, Vayssettes C, Chabli A, Aupetit J, et al. Altered gene expression in liver from a murine model of hyperhomocysteinemia. J Biol Chem. 2003 Aug 22;278(34):31504–31511.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt D, Fenton W. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, Valle D, Childs B, Kinzler K, et al. (eds.). The metabolic and molecular bases of inherited disease. 8th ed. New York: Mc Graw-Hill; 2001. 2007–2056.

    Google Scholar 

  • Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004 Apr 9;279(15):14844–14852.

    Article  CAS  PubMed  Google Scholar 

  • Sauls DL, Lockhart E, Warren ME, Lenkowski A, Wilhelm SE, Hoffman M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry. 2006 Feb 28;45(8):2480–2487.

    Article  CAS  PubMed  Google Scholar 

  • Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998 Jul 16;394(6690):284–287.

    Article  CAS  PubMed  Google Scholar 

  • Shishehbor MH, Oliveira LP, Lauer MS, Sprecher DL, Wolski K, Cho L, et al. Emerging cardiovascular risk factors that account for a significant portion of attributable mortality risk in chronic kidney disease. Am J Cardiol. 2008 Jun 15;101(12):1741–1746.

    Article  PubMed  Google Scholar 

  • Spence JD, Bang H, Chambless LE, Stampfer MJ. Vitamin Intervention For Stroke Prevention trial: an efficacy analysis. Stroke. 2005 Nov;36(11):2404–2409.

    Article  CAS  PubMed  Google Scholar 

  • Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta. 2004 Dec 24;1739(1):5–25.

    CAS  PubMed  Google Scholar 

  • Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, et al. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007 Jun;91(2):165–175.

    Article  CAS  PubMed  Google Scholar 

  • Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002 Jul 23;106(4):484–490.

    Article  CAS  PubMed  Google Scholar 

  • Undas A, Brozek J, Jankowski M, Siudak Z, Szczeklik A, Jakubowski H. Plasma homocysteine affects fibrin clot permeability and resistance to lysis in human subjects. Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1397–1404.

    Article  CAS  PubMed  Google Scholar 

  • Undas A, Jankowski M, Twardowska M, Padjas A, Jakubowski H, Szczeklik A. Antibodies to N-homocysteinylated albumin as a marker for early-onset coronary artery disease in men. Thromb Haemost. 2005 Feb;93(2):346–350.

    CAS  PubMed  Google Scholar 

  • Undas A, Perla J, Lacinski M, Trzeciak W, Kazmierski R, Jakubowski H. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke. 2004 Jun;35(6):1299–1304.

    Article  CAS  PubMed  Google Scholar 

  • Undas A, Stepien E, Glowacki R, Tisonczyk J, Tracz W, Jakubowski H. Folic acid administration and antibodies against homocysteinylated proteins in subjects with hyperhomocysteinemia. Thromb Haemost. 2006 Sep;96(3):342–347.

    CAS  PubMed  Google Scholar 

  • Vos E. Homocysteine levels, paraoxonase 1 (PON1) activity, and cardiovascular risk. JAMA. 2008 Jul 9;300(2):168–169; author reply 9.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Gao Y, Zhou J, Zhen Y, Yang Y, Wang J, et al. Plasma homocysteine thiolactone adducts associated with risk of coronary heart disease. Clin Chim Acta. 2006 Feb;364(1–2):230–234.

    Article  CAS  PubMed  Google Scholar 

  • Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001 Dec;21(12):2080–2085.

    Article  CAS  PubMed  Google Scholar 

  • Zimny J, Sikora M, Guranowski A, Jakubowski H. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem. 2006 Aug 11;281(32):22485–22492.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieronim Jakubowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Jakubowski, H. (2010). The Role of Paraoxonase 1 in the Detoxification of Homocysteine Thiolactone. In: Reddy, S. (eds) Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, vol 660. Humana Press. https://doi.org/10.1007/978-1-60761-350-3_11

Download citation

Publish with us

Policies and ethics