Skip to main content

Photodynamic Therapy of Bacterial and Fungal Biofilm Infections

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 635))

Abstract

Biofilms have been found to be involved in a wide variety of microbial infections in the body, by one estimate 80% of all infections. Infectious processes in which biofilms have been implicated include common problems such as urinary tract infections, catheter infections, middle-ear infections, sinusitis, formation of dental plaque, gingivitis, coating contact lenses, endocarditis, infections in cystic fibrosis, and infections of permanent indwelling devices such as joint prostheses and heart valves. Bacteria living in a biofilm usually have significantly different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment is increased resistance to detergents and antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community. In some cases antibiotic resistance can be increased 1000-fold. Also, the biofilm bacteria excrete toxins that reversibly block important processes such as translation and protecting the cell from bactericidal antibiotics that are ineffective against inactive targets. In the head and neck area, biofilms are a major etiologic factor in periodontitis, wound infections, oral candidiasis, and sinus and ear infections. For the past several decades, photodynamic treatment has been reported in the literature to be effective in eradicating various microorganisms using different photosensitizers, different wavelengths of light, and different light sources. PDT has been further studied to demonstrate its effectiveness for the eradication of both Gram-negative and Gram-positive antibiotic-resistant bacteria. This chapter will focus on the use of PDT in the treatment of antibiotic-resistant biofilms, antibiotic-resistant wound infections, and azole-resistant oral candidiasis using methylene blue-based photodynamic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Allison, D. G., Gilbert, P., Lappin-Scott, H. M., and Wilson, M. (eds.) (2001) Community Structure and Cooperation in Biofilms. Cambridge: Cambridge University Press. ISBN 0-521-79302-5.

    Google Scholar 

  2. Stewart, P. S. and Costerton, J. W. (2001) Antibiotic resistance of bacteria in biofilms. The Lancet, 358, 135–138.

    Article  CAS  Google Scholar 

  3. Lewis, K. (2001) Riddle of biofilm resistance. Antimicrob Agents Chenother, 45, 999–1007.

    Article  CAS  Google Scholar 

  4. Parsek, M. R. and Singh, P. K. (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol, 57, 677–701.

    Article  PubMed  CAS  Google Scholar 

  5. Sanclement, J. P., Webster, P., Thomas, J., and Ramadan, H. H. (2005) Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope, 115, 578–582.

    Article  PubMed  Google Scholar 

  6. Ramadan, H. H., Sanclement, J. A., and Thomas, J. G. (2005) Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg, 132, 414–417.

    Article  PubMed  Google Scholar 

  7. Bendouah, Z., Barbeau, J., Hamad, W. A., and Desrosiers, M. (2006) Biofilm formation by Staphylococcus aureus and Pseudomonas aerugenosa is associated with unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg, 134, 991–996.

    Article  PubMed  Google Scholar 

  8. Sanderson, A. R., Leid, J. G., and Hunsaker, D. (2006) Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope, 116, 1121–1126.

    Article  PubMed  Google Scholar 

  9. Malik, Z., Hanania, J., and Nitzan, Y. (1990) Bactericidal effects of photoactivated porphyrins – an alternative approach to antimicrobial drugs. J Photochem Photobiol B, 5, 281– 293.

    Article  PubMed  CAS  Google Scholar 

  10. Hamblin, M. R., Zahra, T., Contag, C. H., McManus, A. T., and Hasan, T. (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis, 187, 1717–1725.

    Article  PubMed  Google Scholar 

  11. Soukos, N. S., Ximenez-Fyvie, L. A., Hamblin, M. R., Socransky, S. S., and Hasan, T. (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother, 42, 2595–2601.

    PubMed  CAS  Google Scholar 

  12. Embleton, M. L., Nair, S. P., Cookson, B. D., and Wilson, M. (2002) Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate. J Antimicrob Chemother, 50, 857–864.

    Article  PubMed  CAS  Google Scholar 

  13. Wainwright, M., Phoenix, D. A., Laycock, S. L., Wareing, D. R., and Wright, P. A. (1998) Photobacteriocidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol Lett, 160, 177–181.

    Article  PubMed  CAS  Google Scholar 

  14. Smijs, T. G. and Schuitmaker, H. J. (2003) Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol, 77, 556–560.

    Article  PubMed  CAS  Google Scholar 

  15. Friedberg, J. S., Skema, C., Baum, E. D., Burdick, J., Vinogradov, S. A., Wilson, D. F., Horan, A. D., and Nachamkin, I. (2001) In vitro effects of photodynamic therapy on Aspergillus fumigatus. J Antimicrob Chemother, 48, 105–107.

    Article  PubMed  CAS  Google Scholar 

  16. Zeina, B., Greenman, J., Purcell, W. M., and Das, B. (2001) Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol, 144, 274–278.

    Article  PubMed  CAS  Google Scholar 

  17. Wainwright, M. (2003) Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents, 21, 510–520.

    Article  PubMed  CAS  Google Scholar 

  18. Sharma, M., Bansal, H., and Gupta, P. K. (2002) Photodynamic inactivation of antibiotic resistant strain of Pseudomonas aeruginosa by porphyrins induced by delta-aminolaevulinic acid. Indian J Med Res, 116, 99–105.

    PubMed  CAS  Google Scholar 

  19. Teichert, M. C., Jones, J. W., Usacheva, M. N., and Biel, M. A. (2002) Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 93, 155–160.

    Article  PubMed  CAS  Google Scholar 

  20. Usacheva, M. N., Teichert, M. C., and Biel, M. A. (2001) Comparison of the methylene blue and toluidine blue photobacteriocidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med, 29, 165–173.

    Article  PubMed  CAS  Google Scholar 

  21. Swanson, L. (1999) Solving stubborn wound problems could save millions. JAMC, 160, 536.

    Google Scholar 

  22. Singer, A. J., and Clark, R. A. F. (1999) Cutaneous wound healing. New Eng J Med, 341, 738–745.

    Article  PubMed  CAS  Google Scholar 

  23. Dow, G., Browne. A., and Sibbald, R. G. (1999) Infection in chronic wounds: controversies in diagnosis and treatment. Ost/Wound Manang, 45, 23–40.

    CAS  Google Scholar 

  24. Parish, L. C., Witkowski, J. A., and Crissey, J. T. (1993) The Decubitus Ulcer. Chicago: Year Book Medical Publishers.

    Google Scholar 

  25. Gilbert, P., Allison, D. G., McBain, A. J. (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol, 92, 98S–110S.

    Article  PubMed  Google Scholar 

  26. Drenkard, E., Ausubel, F. M. (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416, 740–743.

    Article  PubMed  CAS  Google Scholar 

  27. Gotz, F. (2002) Staphylococcus and biofilms. Mol Microbiol, 43, 1367–1378.

    Article  PubMed  CAS  Google Scholar 

  28. Stewart, P. S. and Costerton, J. W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138.

    Article  PubMed  CAS  Google Scholar 

  29. McBain, A. J., Allison, D., and Gilbert, P. (2000) Emerging strategies for the chemical treatment of microbial biofilms. Biotechnol Genet Eng Rev, 17, 267–279.

    PubMed  CAS  Google Scholar 

  30. Drosou, A., Falabella, A., and Kirsner, C. (2003) Antiseptics on wounds: an area of controversy. Wounds, 15, 149–166.

    Google Scholar 

  31. US Food and Drug Administration. Antibiotic Resistance-Fact Sheet. (2003) http://www.fda.gov/oc/opacom/hottopics/anti_resist.html

  32. National Institute of Allergy and Infectious Disease. Antimicrobial Resistance. (2003) http://www.niaid.nih.gov/factsheets/antimicro.htm.

  33. Bowler, P. G. and Davies, B. J. (1999) The microbiology of acute and chronic wounds. Wounds, 11, 72–78.

    Google Scholar 

  34. Biel, M. A. and Teichert, M. (2008) Phototherapy of antibiotic resistant wound infections. Unpublished results, NIH Grant R43AI47461.

    Google Scholar 

  35. Biel, M. A., Teichert, M., Usacheva, M., and Sievert, C. (2008) PDT treatment of periodontal biofilms. Unpublished results. Supported NIH Grant R44AI041866.

    Google Scholar 

  36. Metclaf, D., Robinson, C., Devine, D., and Wood, S. (2006) Enhancement of erythrosine-mediated phtodynamic therapy of Streptococcus mutant biofilms by light fractionation. J Antimicrob Chemother, 58, 190–192.

    Article  Google Scholar 

  37. Zanin, I. C., Lobo, M. M., and Rodrigues, L. K. (2006) Photosensitization of in vitro biofilms by toluidine blue O combined with light emitting diode. Europ J Oral Sci, 114, 64–69.

    Article  CAS  Google Scholar 

  38. Zeina, B., Greenman, J., Corry, D., and Purcell, C. (2003) Antimicrobial photodynamic therapy: assessment of genotoxic effects on keratinocytes in vitro. Br J Dermatol, 148, 229–232.

    Article  PubMed  CAS  Google Scholar 

  39. Lee, C. F., Lee, C. J., Chen, C. T., and Huang, C. T. (2004) Delta-aminolaevulinic acid mediated photodynamic chemotherapy on Pseudomonas aerugenosa planktonic and biofilm cultures. J Photochem Photobiol B-Biol, 75, 21–25.

    Article  CAS  Google Scholar 

  40. Hamblin, M. R., O’Donnell, D. A., Murthy, N., Contag, C. H., and Hasan, T. (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol, 75, 51–57.

    Article  PubMed  CAS  Google Scholar 

  41. Gad, F., Zahra, T., Hasan, T., and Hamblin, M. R. (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agent Chemother, 48, 2173–2178.

    Article  CAS  Google Scholar 

  42. Lin, H. Y., Chen, C. T., and Huang, C. T. (2004) Use of merocyamine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl Enviroment Microbio, 70, 6453–6458.

    Article  CAS  Google Scholar 

  43. Biel, M. A., Teichert, M., and Usacheva, M. (2008) Photodynamic therapy of Staphylococcus infections. Unpublished results, NIH Grant R43AI04866.

    Google Scholar 

  44. Biel, M. A., Teichert, M., and Usacheva, M. (2008) PDT of wound infections. Unpublished results, NIH Grant R44NR009189.

    Google Scholar 

  45. Robson, M. and Heggers, J (1969) Bacterial quantification of open wounds. Mulit Med, 134, 19–24.

    CAS  Google Scholar 

  46. Robson, M. C. (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin N Am, 77, 637–650.

    Article  PubMed  CAS  Google Scholar 

  47. Robson, M. C., Krizek, T. K., and Heggers, J. P. (1993) Biology of surgical infection. In: Ravich M. M. (ed.) Current Problems in Surgery. Chicago, IL: Yearbook Medical Publishers, 1–62.

    Google Scholar 

  48. Bendy, R., Nuccio, P., and Wolfe, E. (1964) Relationship of quantitative wound bacterial counts to healing of decubitii: effect of topical gentamicin. Antimicrob Agents Chemother, 4, 147–155.

    Google Scholar 

  49. Krizek, T., Robson, M., and Kho, E. (1967) Bacterial growth and skin graft survival. Surg Forum, 18, 518–519.

    Google Scholar 

  50. Webb, B. C., Thomas, C. J., and Willcox, M. D. (1998) Candida-associated denture stomatitis. Aetiology and management: a review. Part 3. Treatment of candidosis. Aust Dent J, 43, 244–249.

    Article  PubMed  CAS  Google Scholar 

  51. Ninane, J. A. (1994) Multicentre study of fluconazole versus oral polyenes in the prevention of fungal infection in children with hematological or oncological malignancies. Multicentre study group. Eur J Clin Microbiol Infect Dis, 13, 330–337.

    Article  PubMed  CAS  Google Scholar 

  52. Philips, P., Zemcov, J., and Mahmood, W. (1996) Itraconazole cyclodextrin solution for fluconazole-refractory oropharyngeal candidiasis in AIDS: correlation of clinical response with in vitro susceptibility. AIDS, 10, 1369–1376.

    Article  Google Scholar 

  53. Pankhurst, C. (2000) Oropharyngeal candidiasis. Clin Evid, 4, 761–773.

    Google Scholar 

  54. Sangeorzan, J. A., Bradley, S. F., Re, X., and Zarins, L. T. (1994) Epidemiology of oral candidiasis in HIV-infected patients. Am J Med, 97, 339–346.

    Article  PubMed  CAS  Google Scholar 

  55. Diz Dios, P., Ocampo, A., Miralles, C., Otero, I., Iglesias, I., and Rayo, N. (1999) Frequency of oropharyngeal candidiasis in HIV-infected patients on protease inhibitor therapy. Oral Surg Oral Med Oral Pathol, 87, 437–441.

    Article  CAS  Google Scholar 

  56. Powderly, W. G., Robinson, K., and Keath, E. J. (1993) Molecular epidemiology of recurrent oral candidiasis in human immunodeficiency virus-positive patients: evidence for two patterns of recurrence. J Infect Dis, 168, 463–466.

    Article  PubMed  CAS  Google Scholar 

  57. Whelan, W. L., Kirsch, D. R., Kwon-Chung, K. J., and Wahl, S. M. (1990) Candida albicans in patients with acquired immunodeficiency syndrome: absence of a novel or hypervirulent strain. J Infect Dis, 162, 513–518.

    Article  PubMed  CAS  Google Scholar 

  58. Klein, R. S., Harris, C. A., Butkus-Small, C., and Moll, B. (1984) Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N Engl J Med, 311, 354–358.

    Article  PubMed  CAS  Google Scholar 

  59. Imam, N., Carpentar, C. C., Mayer, K. H., and Fisher, A. (1990) Hierarchical pattern of mucosal Candida infections in HIV-seropositive women. Am J Med, 89, 142–146.

    Article  PubMed  CAS  Google Scholar 

  60. Stevens, D. A., Greene, S. I., and Lang, O. S. (1991) Thrush can be prevented in patients with acquired immunodeficiency syndrome and the acquired immunodeficiency syndrome-related complex: randomized, double blind, placebo-controlled study of 100-mg oral fluconazole daily. Arch Intern Med, 151, 2458–2464.

    Article  PubMed  CAS  Google Scholar 

  61. Pons, V. G., Greespan, D., Koletar, S., and the Multicenter Study Group. (1993) Comparative study of fluconazole and clotrimazole troches for the treatment of oral thrush in AIDS. J AIDS, 6, 1311–1316.

    CAS  Google Scholar 

  62. Lim, S. G., Lee, C. A., and Hales, M. (1991) Fluconazole for oropharyngeal candidiasis in anti-HIV positive hemophiliacs. Aliment Pharmacol Ther, 5, 199–205.

    Article  PubMed  CAS  Google Scholar 

  63. De Wit, S., Goosens, H., and Weerts, D. (1989) Comparison of fluconazole and ketoconazole for oropharyngeal candidiasis in AIDS. Lancet, 101, 746–747.

    Article  Google Scholar 

  64. Koletar, S., Russell, J. A., and Fass, R. J. (1990) Comparison of oral fluconazole and clotrimazole troches as treatment for oral candidiasis in patients infected with human immunodeficiency virus. Antimicrob Agents Chemother, 34, 2267–2268.

    Article  PubMed  CAS  Google Scholar 

  65. De Repentigny, L. and Ratelle, J. (1996) Comparison of itraconazole and ketoconazole in HIV-positive patients with oropharyngeal or esophageal candidiasis. Chemotherapy, 42, 374–383.

    Article  PubMed  Google Scholar 

  66. Munoz, P., Moreno, S., and Berenguer, J. (1991) Fluconazole-related hepatotoxicity in patients with acquired immunodeficiency syndrome. Arch Intern Med, 151, 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  67. Heinic, G. S., Stevens, D. A., and Greenspan, D. (1993) Fluconazole-resistant Candida in AIDS patients. Oral Surg Oral Med Oral Pathol, 76, 711–715.

    Article  PubMed  CAS  Google Scholar 

  68. Quereda, C., Polanco, A. M., and Giner, C. (1996) Correlation between in vitro resistance to fluconazole and clinical outcome of oropharyngeal candidiasis in HIV-infected patients. Eur J Clin Microbiol Infect Dis, 15, 30–37.

    Article  PubMed  CAS  Google Scholar 

  69. Maenza, J. R., Merz, W. G., and Romagnoli, M. J. (1993) Infection due to fluconazole-resistant Candida in AIDS patients: prevalence and microbiology. Clin Infect Dis, 24, 28–34.

    Article  Google Scholar 

  70. Hitchcock, C. A. (1993) Resistance of Candida albicans to antifungal agents. Biochem Soc Trans, 132, 1039–1047.

    Google Scholar 

  71. Baily, G. G., Perry, F. M., and Denning, D. W. (1994) Fluconazole-resistant candidosis in an HIV cohort. AIDS, 8, 787–792.

    Article  PubMed  CAS  Google Scholar 

  72. Newman, S. L., Flanigan, T. P., and Fisher, A. (1994) Clinically significant mucosal candidiasis resistant to fluconazole treatment in patients with AIDS. Clin Infect Dis, 19, 684–686.

    Article  PubMed  CAS  Google Scholar 

  73. White, A. and Goetz, M. B. (1994) Azole-resistant Candida albicans: reports of two cases of resistance to fluconazole and review. Clin Infect Dis, 19, 687–692.

    Article  PubMed  CAS  Google Scholar 

  74. Sanguineti, A., Carmichael, J. K., and Campbell, K. (1993) Fluconazole-resistant Candida albicans after long-term suppressive therapy. Arch Intern Med, 153, 1122–1124.

    Article  PubMed  CAS  Google Scholar 

  75. Maenza, J. R. (1996) Risk factors for fluconazole-resistant candidiasis in human immunodeficiency virus-infected patients. J Infect Dis, 173, 219–225.

    Article  PubMed  CAS  Google Scholar 

  76. Redding, S., Smith, J., Farinacci, G., and Rinaldi, M. (1994) Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis, 18, 240–242.

    Article  PubMed  CAS  Google Scholar 

  77. Revankar, S. G., Kirkpatrick, W. R., and McAtee, R. K. (1998) A randomized trial of continuous or intermittent therapy with fluconazole for oropharyngeal candidiasis in HIV-infected patients: clinical outcomes and development of fluconazole resistance. Am J Med, 105, 7–11.

    Article  PubMed  CAS  Google Scholar 

  78. Pelletier, R., Peter, J., and Antin, C. (2000) Emergence of resistance of Candida albicans to Clotrimazole in human immunodeficiency virus-infected children: in vitro and clinical correlations. J Clin Microbiol, 38, 1563–1568.

    PubMed  CAS  Google Scholar 

  79. Müller, F. M. C., Kasal, M., and Francesconi, A. (1999) Transmission of an azole-resistant isogenic strain of Candida albicans among human immunodeficiency virus-infected family members with oropharyngeal candidiasis. J Clin Microbiol, 37, 3405–3408.

    PubMed  Google Scholar 

  80. Rex, J. H., Pfaller, M. A., Rinaldi, M. G., and Polack, A. (1993) Antifungal susceptibility testing. Clin Microbiol Rev, 6, 357–381.

    Google Scholar 

  81. Johnson, E. M., Warnock, D. W., Luker, J., Porter, S. R., and Scully, C. (1995) Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidiasis. J Antimicrob Chemother, 35, 103–114.

    Article  PubMed  CAS  Google Scholar 

  82. Ladan, H., Nitzan, Y., and Malik, Z. (1993) The antibacterial activity of haemin compared with cobalt, zinc and magnesium protoporphyrin and its effect on potassium and ultrastructure of Staphylococcus aureus. FEMS Micrbiol Lett, 12, 173–177.

    Article  Google Scholar 

  83. Stenstrom, K., Moan, J., Brunborg, G., and Eklund, T. (1980) Photodynamic inactivation of yeast cells sensitized by hematoporphyrin. Photochem Photobiol, 32, 349–352.

    Article  PubMed  CAS  Google Scholar 

  84. Teichert, M. and Biel, M. A. (2008) Treatment of AIDS-related oral candidiasis. Unpublished results, NIH Grant R44DE14511.

    Google Scholar 

  85. Chabrier-Rosello, Y., Foster, T. H., Perez-Nazario, N., Mitra, S., and Haidaris, C. G. (2005) Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agent Chemotherap 49, 4288–4295.

    Google Scholar 

Download references

Acknowledgments

These research studies were funded by National Institutes of Health Grants R44DE014511, R44NR009189, R43AI047461 and R44AI041866.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Biel, M.A. (2010). Photodynamic Therapy of Bacterial and Fungal Biofilm Infections. In: Gomer, C. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 635. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-697-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-697-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-696-2

  • Online ISBN: 978-1-60761-697-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics