Skip to main content

Mesenchymal Stem Cell Therapy for Cardiac Repair

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 660))

Abstract

Stem cell therapy for repair of damaged cardiac tissue is an attractive option to improve the health of the growing number of heart failure patients. Mesenchymal stem cells (MSCs) possess unique properties that may make them a better option for cardiac repair than other cell types. Unlike other adult stem cells, they appear to escape allorecognition by the immune system and they have immune-modulating properties, thus making it possible to consider them for use as an allogeneic cell therapy product. There is a large and growing body of preclinical and early clinical experience with MSC therapy that shows great promise in realizing the potential of stem cell therapy to effect repair of damaged cardiac tissue. This review discusses the mechanism of action of MSC therapy and summarizes the current literature in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caplan, A. I. (1991) Mesenchymal stem cells. J Orthop Res 9, 641.

    Article  PubMed  CAS  Google Scholar 

  2. Schuleri, K. H., Boyle, A. J., and Hare, J. M. (2007) Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol 180, 195–218.

    Article  PubMed  CAS  Google Scholar 

  3. Ryan, J. M., Barry, F. P., Murphy, J. M., and Mahon, B. P. (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2, 8.

    Article  Google Scholar 

  4. Kemp, K. C., Hows, J., and Donaldson, C. (2005) Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 46, 1531–44.

    Article  PubMed  Google Scholar 

  5. Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95, 9–20.

    Article  PubMed  CAS  Google Scholar 

  6. Zimmet, J., and Hare, J. (2005) Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 100, 471.

    Article  PubMed  CAS  Google Scholar 

  7. Uccelli, A., Moretta, L., and Pistoia, V. (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726–36.

    Article  PubMed  CAS  Google Scholar 

  8. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D. et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–7.

    Article  PubMed  CAS  Google Scholar 

  9. Prockop, D. J., Sekiya, I., and Colter, D. C. (2001) Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3, 393–6.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–9.

    Article  PubMed  CAS  Google Scholar 

  11. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30, 896–904.

    Article  PubMed  CAS  Google Scholar 

  12. Yoon, Y. S., Wecker, A., Heyd, L., Park, J.-S., Tkebuchava, T., Kusano, K., et al. (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115, 326–38.

    PubMed  CAS  Google Scholar 

  13. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30, 42–8.

    Article  PubMed  Google Scholar 

  14. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., and Guinan, E. C. (2003) Suppression of allogeneic T-Cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75, 389–97.

    Article  PubMed  CAS  Google Scholar 

  15. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–43.

    Article  PubMed  Google Scholar 

  16. Aggarwal, S., and Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–22.

    Article  PubMed  CAS  Google Scholar 

  17. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St. John, M., Xie, J.-S., Cattaneo, S., et al. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102, 11474–9.

    Article  PubMed  CAS  Google Scholar 

  18. Amado, L. C., Schuleri, K. H., Saliaris, A. P., Boyle, A. J., Helm, R., Oskouei, B., et al. (2006) Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol 48, 2116–24.

    Article  PubMed  Google Scholar 

  19. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., et al. (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73, 1919–26.

    Article  PubMed  Google Scholar 

  20. Olivares, E. L., Ribeiro, V. P., Werneck de Castro, J. P. S., Ribeiro, K. C., Mattos, E. C., Goldenberg, R. C. S., et al. (2004) Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. Am J Physiol Heart Circ Physiol 287, H464–70.

    Article  PubMed  CAS  Google Scholar 

  21. Nagaya, N., Fujii, T., Iwase, T., Ohgushi, H., Itoh, T., Uematsu, M., et al. (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287, H2670–6.

    Article  PubMed  CAS  Google Scholar 

  22. Berry, M. F., Engler, A. J., Woo, Y. J., Pirolli, T. J., Bish, L. T., Jayasankar, V., et al. (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290, H2196–203.

    Article  PubMed  CAS  Google Scholar 

  23. Schuleri, K. H., Amado, L. C., Boyle, A. J., Centola, M., Saliaris, A. P., Gutman, M. R., et al. (2008) Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol 294, H2002–11.

    Article  PubMed  CAS  Google Scholar 

  24. Imanishi, Y., Saito, A., Komoda, H., Kitagawa-Sakakida, S., Miyagawa, S., Kondoh, H., et al. (2008) Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats. J Mol Cell Cardiol 44, 662–71.

    Article  PubMed  Google Scholar 

  25. Terrovitis, J., Stuber, M., Youssef, A., Preece, S., Leppo, M., Kizana, E., et al. (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117, 1555–62.

    Article  PubMed  Google Scholar 

  26. de Macedo Braga, L., Lacchini, S., Schaan, B., Rodrigues, B., Rosa, K., De Angelis, K., et al. (2008) In situ delivery of bone marrow cells and mesenchymal stem cells improves cardiovascular function in hypertensive rats submitted to myocardial infarction. J Biomed Sci 15, 365–74.

    Article  PubMed  Google Scholar 

  27. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9, 1195–201.

    Article  PubMed  CAS  Google Scholar 

  28. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., et al. (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype and do not become functional cardiomyocytes in vitro. Stem Cells 26, 2884–92.

    Article  PubMed  CAS  Google Scholar 

  29. Valiunas, V., Doronin, S., Valiuniene, L., Potapova, I., Zuckerman, J., Walcott, B., et al. (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol (Lond) 555, 617–26.

    Article  CAS  Google Scholar 

  30. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., et al. (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112, 1128–35.

    Article  PubMed  Google Scholar 

  31. Mills, W. R., Mal, N., Kiedrowski, M. J., Unger, R., Forudi, F., Popovic, Z. B., et al. (2007) Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol 42, 304–14.

    Article  PubMed  CAS  Google Scholar 

  32. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103, 697–705.

    Article  PubMed  CAS  Google Scholar 

  33. Pijnappels, D. A., Schalij, M. J., Ramkisoensing, A. A., Tuyn, J. V., Vries, A. A. F. D., Laarse, A. V. D., et al. (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103, 167–76.

    Article  PubMed  CAS  Google Scholar 

  34. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., and Kessler, P. D. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–8.

    Article  PubMed  Google Scholar 

  35. Gojo, S., Gojo, N., Takeda, Y., Mori, T., Abe, H., Kyo, S., et al. (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288, 51–9.

    Article  PubMed  CAS  Google Scholar 

  36. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S.-M., Finato, N., Bussani, R., et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344, 1750–7.

    Article  PubMed  CAS  Google Scholar 

  37. Nakanishi, C., Yamagishi, M., Yamahara, K., Hagino, I., Mori, H., Sawa, Y., et al. (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374, 11–6.

    Article  PubMed  CAS  Google Scholar 

  38. Krause, U., Harter, C., Seckinger, A., Wolf, D., Reinhard, A., Bea, F., et al. (2007) Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 16, 31–8.

    Article  PubMed  CAS  Google Scholar 

  39. Price, M. J., Chou, C.-C., Frantzen, M., Miyamoto, T., Kar, S., Lee, S., et al. (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111, 231–9.

    Article  PubMed  Google Scholar 

  40. Halkos, M., Zhao, Z.-Q., Kerendi, F., Wang, N.-P., Jiang, R., Schmarkey, L., et al. (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103, 525–36.

    Article  PubMed  Google Scholar 

  41. Lim, S. Y., Kim, Y. S., Ahn, Y., Jeong, M. H., Hong, M. H., Joo, S. Y., et al. (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 70, 530–42.

    Article  PubMed  CAS  Google Scholar 

  42. Molina, E. J., Palma, J., Gupta, D., Torres, D., Gaughan, J. P., Houser, S., et al. (2008) Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy. J Thorac Cardiovasc Surg 135, 292–99.e1.

    Article  PubMed  Google Scholar 

  43. Makkar, R. R., Price, M. J., Lill, M., Frantzen, M., Takizawa, K., Kleisli, T., et al. (2005) Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J Cardiovasc Pharmacol Ther 10, 225–33.

    Article  PubMed  Google Scholar 

  44. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., et al. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27, 1114–22.

    Article  PubMed  Google Scholar 

  45. Perin, E. C., Silva, G. V., Assad, J. A. R., Vela, D., Buja, L. M., Sousa, A. L. S., et al. (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44, 486–95.

    Article  PubMed  CAS  Google Scholar 

  46. Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., Alimoghaddam, K., Sanatkar, M., Gasemi, M., Mirkhani, H., et al. (2007) Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med 10, 467–73.

    PubMed  Google Scholar 

  47. Chen, S.-L., Fang, W.-W., Ye, F., Liu, Y.-H., Qian, J., Shan, S.-J., et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94, 92–5.

    Article  PubMed  Google Scholar 

  48. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002) Chimerism of the transplanted heart. N Engl J Med 346, 5–15.

    Article  PubMed  Google Scholar 

  49. Müller-Ehmsen, J., Krausgrill, B., Burst, V., Schenk, K., Neisen, U. C., Fries, J. W. U., et al. (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41, 876–84.

    Article  PubMed  Google Scholar 

  50. Zhang, S. J., and Wu, J. C. (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 48, 1916–9.

    Article  PubMed  CAS  Google Scholar 

  51. Arbab, A. S., Yocum, G. T., Rad, A. M., Khakoo, A. Y., Fellowes, V., Read, E. J., et al. (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18, 553–9.

    Article  PubMed  CAS  Google Scholar 

  52. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–3.

    Article  PubMed  Google Scholar 

  53. Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., et al. (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116, I38–45.

    Article  PubMed  CAS  Google Scholar 

  54. Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108, 863–8.

    Article  PubMed  Google Scholar 

  55. Bindslev, L., Haack-Sørensen, M., Bisgaard, K., Kragh, L., Mortensen, S., Hesse, B., et al. (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33, 1171–7.

    Article  PubMed  CAS  Google Scholar 

  56. Brenner, W., Aicher, A., Eckey, T., Massoudi, S., Zuhayra, M., Koehl, U., et al. (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45, 512–8.

    PubMed  CAS  Google Scholar 

  57. Liu, X.-H., Bai, C.-G., Xu, Z.-Y., Huang, S.-D., Yuan, Y., Gong, D.-J., et al. (2008) Therapeutic potential of angiogenin modified mesenchymal stem cells: Angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvasc Res 76, 23–30.

    Article  PubMed  CAS  Google Scholar 

  58. Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., and Kittleson, M. D. (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363, 783–4.

    Article  PubMed  Google Scholar 

  59. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–9.

    Article  PubMed  CAS  Google Scholar 

  60. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., Pattany, P. M., Zambrano, J. P., Hu, Q., McNiece, I., Heldman, A. W., Hare, J. M. (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences 106, 14022–7.

    Article  CAS  Google Scholar 

  61. Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., Kellner, J., Zviman, M. M., Hatzistergos, K. E., Detrick, B., Conte, J. V., McNiece, I., Steenbergen, C., Lardo, A. C., Hare, J. M. (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal 30, 2722–32.

    Article  PubMed  Google Scholar 

  62. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, Jr., J. B., Reisman, M. A., Schaer, G. L., Sherman, W. A. (2009) Randomized Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intra­venous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction. Journal of the American College of Cardiology 54, 2277–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Boyle MBBS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boyle, A.J., McNiece, I.K., Hare, J.M. (2010). Mesenchymal Stem Cell Therapy for Cardiac Repair. In: Lee, R. (eds) Stem Cells for Myocardial Regeneration. Methods in Molecular Biology, vol 660. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-705-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-705-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-704-4

  • Online ISBN: 978-1-60761-705-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics