Skip to main content

Using ChIP-seq Technology to Identify Targets of Zinc Finger Transcription Factors

  • Protocol
  • First Online:
Book cover Engineered Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

Half of all human transcription factors are zinc finger proteins and yet very little is known concerning the biological role of the majority of these factors. In particular, very few genome-wide studies of the in vivo binding of zinc finger factors have been performed. Based on in vitro studies and other methods that allow selection of high affinity-binding sites in artificial conditions, a zinc finger code has been developed that can be used to compose a putative recognition motif for a particular zinc finger factor (ZNF). Theoretically, a simple bioinformatics analysis could then predict the genomic locations of all the binding sites for that ZNF. However, it is unlikely that all of the sequences in the human genome having a good match to a predicted motif are in fact occupied in vivo (due to negative influences from repressive chromatin, nucleosomal positioning, overlap of binding sites with other factors, etc). A powerful method to identify in vivo binding sites for transcription factors on a genome-wide scale is the chromatin immunoprecipitation (ChIP) assay, followed by hybridization of the precipitated DNA to microarrays (ChIP-chip) or by high throughput DNA sequencing of the sample (ChIP-seq). Such comprehensive in vivo binding studies would not only identify target genes of a particular zinc finger factor, but also provide binding motif data that could be used to test the validity of the zinc finger code. This chapter describes in detail the steps needed to prepare ChIP samples and libraries for high throughput sequencing using the Illumina GA2 platform and includes descriptions of quality control steps necessary to ensure a successful ChIP-seq experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emerson, R.O. and Thomas, J.H. (2008) Adaptive evolution in zinc finger transcription factors. PLOS Genet. 5, e1000325.

    Article  Google Scholar 

  2. Liu, J. and Stormo, G.D. (2008) Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors. Bioinformatics. 24, 1850–1857.

    Article  PubMed  CAS  Google Scholar 

  3. Cho, S.Y., Chung, M., Park, M., Park, S., and Lee, Y.S. (2008) ZIFIBI: prediction of DNA binding sites for zinc finger proteins. BBRC. 369, 845–848.

    PubMed  CAS  Google Scholar 

  4. Segal, D.J. and Barbas, C.F., 3rd (1999) Design of novel sequence-specific DNA-binding proteins. Curr Opin Chem Biol. 4, 34–39.

    Article  Google Scholar 

  5. Weinmann, A.S., Yan, P.S., Oberley, M.J., Huang, T.H.-M., and Farnham, P.J. (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16, 235–244.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, D.S., Li, W., Gordon, D.B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Carroll, J.S., Brown, M., Flicek, P., Koch, C.M., Dunham, I., Bieda, M., et al. (2008) Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res. 18, 393–403.

    Article  PubMed  Google Scholar 

  7. Kirmizis, A., Bartley, S.M., Kuzmichev, A., Margueron, R., Reinberg, D., Green, R., and Farnham, P.J. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 lysine 27. Genes Dev. 18, 1592–1605.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu, Y., Green, R.D., and Ren, B. (2005) A high-resolution map of active promoters in the human genome. Nature. 436, 876–880.

    Article  PubMed  CAS  Google Scholar 

  9. Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., and Gingeras, T.R. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 116, 499–509.

    Article  PubMed  CAS  Google Scholar 

  10. Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., Fox, E.A., Silver, P.A., and Brown, M. (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 122, 33–43.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman, B.G. and Jones, S.J. (2009) Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol. 201, 1–13.

    Article  PubMed  CAS  Google Scholar 

  12. Weinmann, A.S., Bartley, S.M., Zhang, M.Q., Zhang, T., and Farnham, P.J. (2001) The use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol. 21, 6820–6832.

    Article  PubMed  CAS  Google Scholar 

  13. Loh, Y.-H., Wu, Q., Chew, J.-L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K.-Y., Sung, K.W., Lee, C.W., Zhao, X.D., Chiu, K.P., Lipovich, L., Kuznetsov, V.A., Robson, P., Stanton, L.W., Wei, C.L., Ruan, Y., Lim, B., and Ng, H.H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 38(4), 431-440, on line March 5, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 4, 1–7.

    Article  Google Scholar 

  15. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science. 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  16. Cuddapah, S., Jothi, R., Schones, D.E., Roh, T.-Y., Cui, K., and Zhao, K. (2009) Global analysis of the insulator CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32.

    Article  PubMed  CAS  Google Scholar 

  17. Frietze, S., Lan, X., Jin, V.X., and Farnham, P.J. (2010) Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem. 285, 1393–1403.

    Google Scholar 

  18. Blahnik, K.R., Dou, L., OʹGeen, H., McPhillips, T., Xu, X., Cao, A.R., Iyengar, S., Nicolet, C.M., Ludäscher, B., Korf, I., and Farnham, P.J. (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 38, e13.

    Google Scholar 

  19. Fejes, A.P., Robertson, G., Bilenky, M., Varhol, R., Bainbridge, M., and Jones, S.J.M. (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics. 24, 1729–1730.

    Article  PubMed  CAS  Google Scholar 

  20. Xu, H., Wei, C.-L., Lin, F., and Sung, W.-K. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics. 24, 2344–2349.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

    Article  PubMed  Google Scholar 

  22. Jothi, R., Cuddapah, S., Barski, A., Cui, K., and Zhao, K. (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-seq data. Nucleic Acids Res. 36, 5221–5231.

    Article  PubMed  CAS  Google Scholar 

  23. Rozen, S. and Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: (Krawetz, S., and Misener, S., Eds.), Bioinformatics methods and protocols: methods in molecular biology, pp. 365–386. Humana Press, Totowa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O’Geen, H., Frietze, S., Farnham, P.J. (2010). Using ChIP-seq Technology to Identify Targets of Zinc Finger Transcription Factors. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics