Skip to main content

Construction of Human Antibody Gene Libraries and Selection of Antibodies by Phage Display

  • Protocol
  • First Online:
Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 651))

Abstract

Recombinant antibodies as therapeutics offer new opportunities for the treatment of many tumor diseases. To date, 18 antibody-based drugs are approved for cancer treatment and hundreds of anti-tumor antibodies are under development. The first clinically approved antibodies were of murine origin or human-mouse chimeric. However, since murine antibody domains are immunogenic in human patients and could result in human anti-mouse antibody (HAMA) responses, currently mainly humanized and fully human antibodies are developed for therapeutic applications.

Here, in vitro antibody selection technologies directly allow the selection of human antibodies and the corresponding genes from human antibody gene libraries. Antibody phage display is the most common way to generate human antibodies and has already yielded thousands of recombinant antibodies for research, diagnostics and therapy. Here, we describe methods for the construction of human scFv gene libraries and the antibody selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dübel, S. (2007) Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 74, 723–729.

    Article  PubMed  Google Scholar 

  2. Coiffier, B. (2008) Monoclonal antibodies in the treatment of malignant lymphomas. Adv Exp Med Biol 610, 155–176.

    Article  PubMed  CAS  Google Scholar 

  3. Cao, Y. (2008) Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Adv Cancer Res 100, 113–131.

    Article  PubMed  CAS  Google Scholar 

  4. Jones, S. E. (2008) Metastatic breast cancer: the treatment challenge. Clin Breast Cancer 8, 224–233.

    Article  PubMed  CAS  Google Scholar 

  5. Chatenoud, L., and Bluestone, J. A. (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7, 622–632.

    Article  PubMed  CAS  Google Scholar 

  6. Courtenay-Luck, N. S., Epenetos, A. A., Moore, R., Larche, M., Pectasides, D., Dhokia, B., and Ritter, M. A. (1986) Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res 46, 6489–6493.

    PubMed  CAS  Google Scholar 

  7. Moroney, S., and Plückthun, A. (2005) Modern antibody technology: the impact on drug development. In: Knäblein, J. (ed.) Modern Biopharmaceuticals. Wiley-VCH, Weinheim, pp. 1147–1186.

    Google Scholar 

  8. Moss, M. L., Sklair-Tavron, L., and Nudelman, R. (2008) Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat Clin Pract Rheumatol 4, 300–309.

    Article  PubMed  CAS  Google Scholar 

  9. Dalle, S., Thieblemont, C., Thomas, L., and Dumontet, C. (2008) Monoclonal antibodies in clinical oncology. Anti-Can Agents Med Chem 8, 523–532.

    Article  CAS  Google Scholar 

  10. Alonso-Ruiz, A., Pijoan, J. I., Ansuategui, E., Urkaregi, A., Calabozo, M., and Quintana, A. (2008) Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety. BMC Musculoskeletal Disord 9, 52.

    Article  Google Scholar 

  11. Osbourn, J., Groves, M., and Vaughan, T. (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36, 61–68.

    Article  PubMed  CAS  Google Scholar 

  12. Fishwild, D. M. et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14, 845–851.

    Article  PubMed  CAS  Google Scholar 

  13. Lonberg, N., and Huszar, D. (1995) Human antibodies from transgenic mice. Int Rev Immunol 13, 65–93.

    Article  PubMed  CAS  Google Scholar 

  14. Jakobovits, A. (1995) Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 6, 561–566.

    Article  PubMed  CAS  Google Scholar 

  15. Winter, G., and Milstein, C. (1991) Man-made antibodies. Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  16. Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J., and Lerner, R. A. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  17. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  18. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  19. Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147–153.

    Article  PubMed  CAS  Google Scholar 

  20. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  21. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  22. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  23. Barbas, C. F., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  24. Mazor, Y., Van Blarcom, T., Mabry, R., Iverson, B. L., and Georgiou, G. (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25, 563–565.

    Article  PubMed  CAS  Google Scholar 

  25. Simmons, L. C. et al. (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263, 133–147.

    Article  PubMed  CAS  Google Scholar 

  26. Thie, H., Voedisch, B., Dübel, S., Hust, M., and Schirrmann, T. (2009) Affinity maturation by phage display. Methods Mol Biol 525, 309–322.

    Article  PubMed  CAS  Google Scholar 

  27. Hanes, J., and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  28. He, M., and Taussig, M. J. (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25, 5132–5134.

    Article  PubMed  CAS  Google Scholar 

  29. Roberts, R. W., and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94, 12297–12302.

    Article  PubMed  CAS  Google Scholar 

  30. Boder, E. T., and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15, 553–557.

    Article  PubMed  CAS  Google Scholar 

  31. Thie, H., Meyer, T., Schirrmann, T., Hust, M., and Dübel, S. (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9, 439–446.

    Article  PubMed  CAS  Google Scholar 

  32. Pelat, T., Hust, M., Laffly, E., Condemine, F., Bottex, C., Vidal, D., Lefranc, M., Dübel, S., and Thullier, P. (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51, 2758–2764.

    Article  PubMed  CAS  Google Scholar 

  33. de Haard, H. J., van Neer, N., Reurs, A., Hufton, S. E., Roovers, R. C., Henderikx, P., de Bruïne, A. P., Arends, J. W., and Hoogenboom, H. R. (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274, 18218–18230.

    Article  PubMed  Google Scholar 

  34. Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273, 21769–21776.

    Article  PubMed  CAS  Google Scholar 

  35. Hoet, R. M. et al. (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23, 344–348.

    Article  PubMed  CAS  Google Scholar 

  36. Hayashi, N., Welschof, M., Zewe, M., Braunagel, M., Dübel, S., Breitling, F., and Little, M. (1994) Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17, 310–315.

    PubMed  CAS  Google Scholar 

  37. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  38. Sblattero, D., and Bradbury, A. (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18, 75–80.

    Article  PubMed  CAS  Google Scholar 

  39. Hust, M., and Dübel, S. (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22, 8–14.

    Article  PubMed  CAS  Google Scholar 

  40. Hust, M., Dübel, S., and Schirrmann, T. (2007) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 408, 243–255.

    Article  PubMed  CAS  Google Scholar 

  41. Welschof, M., Terness, P., Kipriyanov, S. M., Stanescu, D., Breitling, F., Dörsam, H., Dübel, S., Little, M., and Opelz, G. (1997) The antigen-binding domain of a human IgG-anti-F(ab')2 autoantibody. Proc Natl Acad Sci USA 94, 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  42. Johansen, L. K., Albrechtsen, B., Andersen, H. W., and Engberg, J. (1995) pFab60: a new, efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng 8, 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  43. Little, M. et al. (1999) Generation of a large complex antibody library from multiple donors. J Immunol Methods 231, 3–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kirsch, M., Hülseweh, B., Nacke, C., Rülker, T., Schirrmann, T., Marschall, H., Hust, M., and Dübel, S. (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8, 66.

    Article  PubMed  Google Scholar 

  45. McCafferty, J., Fitzgerald, K. J., Earnshaw, J., Chiswell, D. J., Link, J., Smith, R., and Kenten, J. (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl Biochem Biotechnol 47, 157–171.

    Article  PubMed  CAS  Google Scholar 

  46. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., McCafferty, J., Hodits, R. A., Wilton, J., and Johnson, K. S. (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14, 309–314.

    Article  PubMed  CAS  Google Scholar 

  47. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H. R., and Plückthun, A. (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201, 35–55.

    Article  PubMed  CAS  Google Scholar 

  48. Shirai, H., Kidera, A., and Nakamura, H. (1999) H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett 455, 188–197.

    Article  PubMed  CAS  Google Scholar 

  49. Akamatsu, Y., Cole, M. S., Tso, J. Y., and Tsurushita, N. (1993) Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments. J Immunol 151, 4651–4659.

    PubMed  CAS  Google Scholar 

  50. Hoogenboom, H. R., and Winter, G. (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  51. Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994) Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J 13, 692–698.

    PubMed  CAS  Google Scholar 

  52. Desiderio, A., Franconi, R., Lopez, M., Villani, M. E., Viti, F., Chiaraluce, R., Consalvi, V., Neri, D., and Benvenuto, E. (2001) A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol 310, 603–615.

    Article  PubMed  CAS  Google Scholar 

  53. Barbas, C. F., Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci USA. 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  54. Jirholt, P., Ohlin, M., Borrebaeck, C. A., and Söderlind, E. (1998) Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215, 471–476.

    Article  PubMed  CAS  Google Scholar 

  55. Söderlind, E. et al. (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18, 852–856.

    Article  PubMed  Google Scholar 

  56. Schütte, M., Thullier, P., Pelat, T., Wezler, X., Rosenstock, P., Hinz, D., Kirsch, M.I., Hasenberg, M., Frank, R., Schirrmann, T., Gunzer, M., Hust, M., and Dübel, S. (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS ONE 4, e6625.

    Google Scholar 

  57. Løset, G. A., Løbersli, I., Kavlie, A., Stacy, J. E., Borgen, T., Kausmally, L., Hvattum, E., Simonsen, B., Hovda, M. B., and Brekke, O. H. (2005) Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. J Immunol Methods. 299, 47–62.

    Article  PubMed  Google Scholar 

  58. Sheets, M. D. et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  59. Waterhouse, P., Griffiths, A. D., Johnson, K. S., and Winter, G. (1993) Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res 21, 2265–2266.

    Article  PubMed  CAS  Google Scholar 

  60. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., and Allison, T. J. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  61. Geoffroy, F., Sodoyer, R., and Aujame, L. (1994) A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151, 109–113.

    Article  PubMed  CAS  Google Scholar 

  62. Parmley, S. F., and Smith, G.,P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318.

    Article  PubMed  CAS  Google Scholar 

  63. Hawlisch, H., Müller, M., Frank, R., Bautsch, W., Klos, A., and Köhl, J. (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293, 142–145.

    Article  PubMed  CAS  Google Scholar 

  64. Moghaddam, A., Borgen, T., Stacy, J., Kausmally, L., Simonsen, B., Marvik, O. J., Brekke, O. H., and Braunagel, M. (September 2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280, 139–155.

    Article  PubMed  CAS  Google Scholar 

  65. Hust, M., Maiss, E., Jacobsen, H., and Reinard, T. (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106, 225–233.

    Article  PubMed  CAS  Google Scholar 

  66. Retter, I., Althaus, H. H., Münch, R., and Müller, W. (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33, D671- D674.

    Article  PubMed  CAS  Google Scholar 

  67. Hust, M., Jostock, T., Menzel, C., Voedisch, B., Mohr, A., Brenneis, M., Kirsch, M. I., Meier, D., and Dübel, S. (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7,14.

    Article  PubMed  Google Scholar 

  68. Rondot, S., Koch, J., Breitling, F., and Dübel, S. (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19, 75–78.

    Article  PubMed  CAS  Google Scholar 

  69. Soltes, G., Hust, M., Ng, K. K. Y., Bansal, A., Field, J., Stewart, D. I. H., Dübel, S., Cha, S., and Wiersma, E. J. (2007) On the influence of vector design on antibody phage display. J Biotechnol 127, 626–637.

    Article  PubMed  CAS  Google Scholar 

  70. Hust, M., Meysing, M., Schirrmann, T., Selke, M., Meens, J., Gerlach, G., and Dübel, S. (2006) Enrichment of open reading frames presented on bacteriophage M13 using hyperphage. Biotechniques 41, 335–342.

    Article  PubMed  CAS  Google Scholar 

  71. Goletz, S., Christensen, P. A., Kristensen, P., Blohm, D., Tomlinson, I., Winter, G., and Karsten, U. (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315, 1087–1097.

    Article  PubMed  CAS  Google Scholar 

  72. Finnern, R., Pedrollo, E., Fisch, I., Wieslander, J., Marks, J. D., Lockwood, C. M., and Ouwehand, W. H. (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107, 269–281.

    Article  PubMed  CAS  Google Scholar 

  73. Mersmann, M., Schmidt, A., Tesar, M., Schöneberg, A., Welschof, M., Kipriyanov, S., Terness, P., Little, M., Pfizenmaier, K., and Moosmayer, D. (1998) Monitoring of scFv selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220, 51–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stefan Dübel and Torsten Meyer for discussion and corrections on the manuscript. We gratefully acknowledge the financial support by the German ministry of education and research (BMBF, SMP “Antibody Factory” in the NGFN2 program).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schirrmann, T., Hust, M. (2010). Construction of Human Antibody Gene Libraries and Selection of Antibodies by Phage Display. In: Yotnda, P. (eds) Immunotherapy of Cancer. Methods in Molecular Biology, vol 651. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-786-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-786-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-785-3

  • Online ISBN: 978-1-60761-786-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics