Skip to main content

Recombinant Antibodies for the Generation of Antibody Arrays

  • Protocol
  • First Online:
Protein Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Affinity proteomics, mainly represented by antibody microarrays, has in recent years been established as a powerful tool for high-throughput (disease) proteomics. The technology can be used to generate detailed protein expression profiles, or protein maps, of focused set of proteins in crude proteomes and potentially even high-resolution portraits of entire proteomes. The technology provides unique opportunities, for example biomarker discovery, disease diagnostics, patient stratification and monitoring of disease, and taking the next steps toward personalized medicine. However, the process of designing high-performing, high-density antibody micro- and nanoarrays has proven to be challenging, requiring truly cross-disciplinary efforts to be adopted. In this mini-review, we address one of these key technological issues, namely, the choice of probe format, and focus on the use of recombinant antibodies vs. polyclonal and monoclonal antibodies for the generation of antibody arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borrebaeck, C. A., and Wingren, C. (2007) High-throughput proteomics using antibody microarrays: an update, Expert review of molecular diagnostics 7, 673–686.

    Article  PubMed  CAS  Google Scholar 

  2. Borrebaeck, C. A., and Wingren, C. (2009) Transferring proteomic discoveries into clinical practice, Expert review of proteomics 6, 11–13.

    Article  PubMed  Google Scholar 

  3. Haab, B. B. (2006) Applications of antibody array platforms, Current opinion in biotechnology.

    Google Scholar 

  4. Hartmann, M., Roeraade, J., Stoll, D., Templin, M. F., and Joos, T. O. (2009) Protein ­microarrays for diagnostic assays, Analytical and ­bioanalytical chemistry 393, 1407–1416.

    Google Scholar 

  5. Kingsmore, S. F. (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays, Nature reviews 5, 310–320.

    Article  PubMed  CAS  Google Scholar 

  6. Wingren, C., and Borrebaeck, C. (2006) Antibody Microarrays - Current Status and Key Technological Advances, OMICS 10, 411–427.

    Article  PubMed  CAS  Google Scholar 

  7. Angenendt, P. (2005) Progress in protein and antibody microarray technology, Drug discovery today 10, 503–511.

    Article  PubMed  CAS  Google Scholar 

  8. MacBeath, G. (2002) Protein microarrays and proteomics, Nat Genet 32 Suppl, 526–532.

    Google Scholar 

  9. Svedhem, S., Pfeiffer, I., Larsson, C., Wingren, C., Borrebaeck, C., and Hook, F. (2003) Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template, Chembiochem 4, 339–343.

    Article  PubMed  CAS  Google Scholar 

  10. Wacker, R., and Niemeyer, C. M. (2004) DDI-microFIA--A readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins, Chembiochem 5, 453–459.

    Article  PubMed  CAS  Google Scholar 

  11. Wacker, R., Schroder, H., and Niemeyer, C. M. (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study, Anal Biochem 330, 281–287.

    Article  PubMed  CAS  Google Scholar 

  12. He, M., Stoevesandt, O., Palmer, E. A., Khan, F., Ericsson, O., and Taussig, M. J. (2008) Printing protein arrays from DNA arrays, Nature methods 5, 175–177.

    Article  PubMed  CAS  Google Scholar 

  13. He, M., Stoevesandt, O., and Taussig, M. J. (2008) In situ synthesis of protein arrays, Current opinion in biotechnology 19, 4–9.

    Article  PubMed  CAS  Google Scholar 

  14. He, M., and Taussig, M. J. (2001) Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method), Nucleic Acids Res 29, E73–73.

    Article  PubMed  CAS  Google Scholar 

  15. Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A. Y., Walter, J. C., and LaBaer, J. (2004) Self-assembling protein microarrays, Science 305, 86–90.

    Article  PubMed  CAS  Google Scholar 

  16. Ramachandran, N., Hainsworth, E., Demirkan, G., and LaBaer, J. (2006) On-chip protein ­synthesis for making microarrays, Methods in molecular biology Clifton, N.J 328, 1–14.

    Google Scholar 

  17. Ramachandran, N., Raphael, J. V., Hainsworth, E., Demirkan, G., Fuentes, M. G., Rolfs, A., Hu, Y., and LaBaer, J. (2008) Next-generation high-density self-assembling functional protein arrays, Nature methods 5, 535–538.

    Article  PubMed  CAS  Google Scholar 

  18. Joos, T. O., Stoll, D., and Templin, M. F. (2002) Miniaturised multiplexed immunoassays, Current opinion in chemical biology 6, 76–80.

    Article  PubMed  CAS  Google Scholar 

  19. Schwenk, J. M., Gry, M., Rimini, R., Uhlen, M., and Nilsson, P. (2008) Antibody suspension bead arrays within serum proteomics, Journal of proteome research 7, 3168–3179.

    Article  PubMed  CAS  Google Scholar 

  20. Templin, M. F., Stoll, D., Bachmann, J., and Joos, T. O. (2004) Protein microarrays and multiplexed sandwich immunoassays: what beats the beads?, Combinatorial chemistry & high throughput screening 7, 223–229.

    CAS  Google Scholar 

  21. Ingvarsson, J., Larsson, A., Sjoholm, A. G., Truedsson, L., Jansson, B., Borrebaeck, C. A., and Wingren, C. (2007) Design of recombinant antibody microarrays for serum protein profiling: targeting of complement proteins, Journal of proteome research 6, 3527–3536.

    Article  PubMed  CAS  Google Scholar 

  22. Kusnezow, W., Banzon, V., Schroder, C., Schaal, R., Hoheisel, J. D., Ruffer, S., Luft, P., Duschl, A., and Syagailo, Y. V. (2007) Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies, Proteomics 7, 1786–1799.

    Article  PubMed  CAS  Google Scholar 

  23. Wingren, C., Ingvarsson, J., Dexlin, L., Szul, D., and Borrebaeck, C. A. (2007) Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support, Proteomics 7, 3055–3065.

    Article  PubMed  CAS  Google Scholar 

  24. Haab, B. B. (2005) Multiplexed protein analysis using antibody microarrays and label-based detection, Methods Mol Med 114, 183–194.

    PubMed  CAS  Google Scholar 

  25. Ellmark, P., Ingvarsson, J., Carlsson, A., Lundin, B. S., Wingren, C., and Borrebaeck, C. A. (2006) Identification of protein expression signatures associated with Helicobacter pylori infection and gastric adenocarcinoma using recombinant antibody microarrays, Mol Cell Proteomics 5, 1638–1646.

    Article  PubMed  CAS  Google Scholar 

  26. Haab, B. B. (2005) Antibody arrays in cancer research, Mol Cell Proteomics 4, 377–383.

    Article  PubMed  CAS  Google Scholar 

  27. Ingvarsson, J., Wingren, C., Carlsson, A., Ellmark, P., Wahren, B., Engstrom, G., Harmenberg, U., Krogh, M., Peterson, C., and Borrebaeck, C. A. (2008) Detection of pancreatic cancer using antibody microarray-based serum protein profiling, Proteomics 8, 2211–2219.

    Article  PubMed  CAS  Google Scholar 

  28. Orchekowski, R., Hamelinck, D., Li, L., Gliwa, E., vanBrocklin, M., Marrero, J. A., Vande Woude, G. F., Feng, Z., Brand, R., and Haab, B. B. (2005) Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer, Cancer research 65, 11193–11202.

    Article  PubMed  CAS  Google Scholar 

  29. Sanchez-Carbayo, M., Socci, N. D., Lozano, J. J., Haab, B. B., and Cordon-Cardo, C. (2006) Profiling bladder cancer using targeted antibody arrays, Am J Pathol 168, 93–103.

    Article  PubMed  CAS  Google Scholar 

  30. Borrebaeck, C. A., and Wingren, C. (2009) Design of high-density antibody microarrays for disease proteomics: Key technological issues, Journal of proteomics.

    Google Scholar 

  31. Wingren, C., and Borrebaeck, C. A. (2004) High-throughput proteomics using antibody microarrays, Expert review of proteomics 1, 355–364.

    Article  PubMed  CAS  Google Scholar 

  32. Saerens, D., Ghassabeh, G. H., and Muyldermans, S. (2008) Antibody technology in proteomics, Brief Funct Genomic Proteomic 7, 275–282.

    Article  PubMed  CAS  Google Scholar 

  33. Renberg, B., Nordin, J., Merca, A., Uhlen, M., Feldwisch, J., Nygren, P. A., and Karlstrom, A. E. (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats, Journal of proteome research 6, 171–179.

    Article  PubMed  CAS  Google Scholar 

  34. Renberg, B., Shiroyama, I., Engfeldt, T., Nygren, P. K., and Karlstrom, A. E. (2005) Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules, Anal Biochem 341, 334–343.

    Article  PubMed  CAS  Google Scholar 

  35. Lao, Y. H., Peck, K., and Chen, L. C. (2009) Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect, Anal Chem.

    Google Scholar 

  36. Walter, J. G., Kokpinar, O., Friehs, K., Stahl, F., and Scheper, T. (2008) Systematic investigation of optimal aptamer immobilization for protein-microarray applications, Anal Chem 80, 7372–7378.

    Article  PubMed  CAS  Google Scholar 

  37. Cho, E. J., Collett, J. R., Szafranska, A. E., and Ellington, A. D. (2006) Optimization of aptamer microarray technology for multiple protein targets, Analytica chimica acta 564, 82–90.

    Article  PubMed  CAS  Google Scholar 

  38. Collett, J. R., Cho, E. J., Lee, J. F., Levy, M., Hood, A. J., Wan, C., and Ellington, A. D. (2005) Functional RNA microarrays for high-throughput screening of antiprotein aptamers, Anal Biochem 338, 113–123.

    Article  PubMed  CAS  Google Scholar 

  39. Campbell, C. J., O’Looney, N., Chong Kwan, M., Robb, J. S., Ross, A. J., Beattie, J. S., Petrik, J., and Ghazal, P. (2006) Cell interaction microarray for blood phenotyping, Anal Chem 78, 1930–1938.

    Article  PubMed  CAS  Google Scholar 

  40. Haab, B. B. (2003) Methods and applications of antibody microarrays in cancer research, Proteomics 3, 2116–2122.

    Article  PubMed  CAS  Google Scholar 

  41. Song, S., Li, B., Wang, L., Wu, H., Hu, J., Li, M., and Fan, C. (2007) A cancer protein microarray platform using antibody fragments and its clinical applications, Mol Biosyst 3, 151–158.

    Article  PubMed  CAS  Google Scholar 

  42. Wingren, C., Ingvarsson, J., Lindstedt, M., and Borrebaeck, C. A. (2003) Recombinant antibody microarrays–a viable option?, Nat Biotechnol 21, 223.

    Article  PubMed  CAS  Google Scholar 

  43. Pavlickova, P., Schneider, E. M., and Hug, H. (2004) Advances in recombinant antibody microarrays, Clin Chim Acta 343, 17–35.

    Article  PubMed  CAS  Google Scholar 

  44. Wingren, C., and Borrebaeck, C. A. (2008) Antibody microarray analysis of directly labelled complex proteomes, Current opinion in biotechnology 19, 55–61.

    Article  PubMed  CAS  Google Scholar 

  45. Kingsmore, S. F., and Patel, D. D. (2003) Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification, Current opinion in biotechnology 14, 74–82.

    Article  PubMed  CAS  Google Scholar 

  46. Mitchell, P. (2002) A perspective on protein microarrays, Nature biotechnology 20, 225–229.

    Article  PubMed  CAS  Google Scholar 

  47. Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions, Genome Biol 2, RESEARCH0004.

    Google Scholar 

  48. Lefranc, M. P. (2004) IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunogenetics and immunoinformatics, Molecular immunology 40, 647–660.

    Article  PubMed  CAS  Google Scholar 

  49. Lefranc, M. P. (2008) IMGT, the International ImMunoGeneTics Information System for Immunoinformatics : methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics, Mol Biotechnol 40, 101–111.

    Article  PubMed  CAS  Google Scholar 

  50. Barbas, C. F., 3rd, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site, Proceedings of the National Academy of Sciences of the United States of America 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  51. Hanes, J., Schaffitzel, C., Knappik, A., and Pluckthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display, Nat Biotechnol 18, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  52. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wolle, J., Pluckthun, A., and Virnekas, B. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides, J Mol Biol 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  53. Lee, C. V., Liang, W. C., Dennis, M. S., Eigenbrot, C., Sidhu, S. S., and Fuh, G. (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold, J Mol Biol 340, 1073–1093.

    Article  PubMed  CAS  Google Scholar 

  54. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage, J Mol Biol 222, 581–597.

    Google Scholar 

  55. Soderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A. M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., Danielsson, L., Carlsson, R., and Borrebaeck, C. A. (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries, Nat Biotechnol 18, 852–856.

    Article  PubMed  CAS  Google Scholar 

  56. Angenendt, P., Wilde, J., Kijanka, G., Baars, S., Cahill, D. J., Kreutzberger, J., Lehrach, H., Konthur, Z., and Glokler, J. (2004) Seeing ­better through a MIST: evaluation of monoclonal recombinant antibody fragments on microarrays, Anal Chem 76, 2916–2921.

    Article  PubMed  CAS  Google Scholar 

  57. Cahill, D. J. (2001) Protein and antibody arrays and their medical applications, J Immunol Methods 250, 81–91.

    Article  PubMed  CAS  Google Scholar 

  58. Cahill, D. J., and Nordhoff, E. (2003) Protein arrays and their role in proteomics, Adv Biochem Eng Biotechnol 83, 177–187.

    PubMed  CAS  Google Scholar 

  59. Wingren, C., and Borrebaeck, C. (2006) Recombinant Antibody Microarrays, Screening - Trends in Drug Discovery 2, 13–15.

    Google Scholar 

  60. Wingren, C., and Borrebaeck, C. A. (2009) Antibody-based microarrays, Methods in molecular biology Clifton, N.J 509, 57–84.

    Google Scholar 

  61. Seurynck-Servoss, S. L., Baird, C. L., Miller, K. D., Pefaur, N. B., Gonzalez, R. M., Apiyo, D. O., Engelmann, H. E., Srivastava, S., Kagan, J., Rodland, K. D., and Zangar, R. C. (2008) Immobilization strategies for single-chain antibody microarrays, Proteomics 8, 2199–2210.

    Article  PubMed  CAS  Google Scholar 

  62. Wingren, C., Steinhauer, C., Ingvarsson, J., Persson, E., Larsson, K., and Borrebaeck, C. A. (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes, Proteomics 5, 1281–1291.

    Article  PubMed  CAS  Google Scholar 

  63. Steinhauer, C., Wingren, C., Hager, A. C., and Borrebaeck, C. A. (2002) Single framework recombinant antibody fragments designed for protein chip applications, BioTechniques Suppl, 38–45.

    Google Scholar 

  64. Steinhauer, C., Wingren, C., Khan, F., He, M., Taussig, M. J., and Borrebaeck, C. A. (2006) Improved affinity coupling for antibody microarrays: Engineering of double-(His)(6)-tagged single framework recombinant antibody fragments, Proteomics 6, 4227–4234.

    Article  PubMed  CAS  Google Scholar 

  65. Wingren, C., and Borrebaeck, C. A. (2007) Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays, Drug discovery today 12, 813–819.

    Article  PubMed  CAS  Google Scholar 

  66. Gulmann, C., Sheehan, K. M., Kay, E. W., Liotta, L. A., and Petricoin, E. F., 3rd. (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer, The Journal of pathology 208, 595–606.

    Article  PubMed  CAS  Google Scholar 

  67. Utz, P. J. (2005) Protein arrays for studying blood cells and their secreted products, Immunological reviews 204, 264–282.

    Article  PubMed  CAS  Google Scholar 

  68. MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination, Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  69. Bailey, G. S. (1994) The raising of a polyclonal antiserum to a protein, Methods in molecular biology Clifton, N.J 32, 381–388.

    Google Scholar 

  70. Phelan, M. L., and Nock, S. (2003) Generation of bioreagents for protein chips, Proteomics 3, 2123–2134.

    Article  PubMed  CAS  Google Scholar 

  71. Agaton, C., Galli, J., Hoiden Guthenberg, I., Janzon, L., Hansson, M., Asplund, A., Brundell, E., Lindberg, S., Ruthberg, I., Wester, K., Wurtz, D., Hoog, C., Lundeberg, J., Stahl, S., Ponten, F., and Uhlen, M. (2003) Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues, Mol Cell Proteomics 2, 405–414.

    PubMed  CAS  Google Scholar 

  72. Nilsson, P., Paavilainen, L., Larsson, K., Odling, J., Sundberg, M. r., Andersson, A.-C., Kampf, C., Persson, A., Szigyarto, C. A.-K., Ottosson, J., Bjorling, E., Hober, S., Wernérus, H., Wester, K., Pontén, F., and Uhlen, M. (2005) Towards a human proteome atlas: High-throughput generation of mono-specific antibodies for tissue profiling, Proteomics 5, 4327–4337.

    Google Scholar 

  73. Uhlen, M., Bjorling, E., Agaton, C., Szigyarto Cristina, A.-K., Amini, B., Andersen, E., Andersson, A.-C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Bjorklund Marcus, G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M., Sterky, F., Stromberg, S., Sundberg, M. r., Tegel, H., Tourle, S., Wahlund, E., Waldén, A., Wan, J., Wernérus, H., Westberg, J., Wester, K., Wrethagen, U., Xu Lan, L., Hober, S., and Pontén, F. (2005) A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics, Molecular & Cellular Proteomics 4, 1920–1932.

    Google Scholar 

  74. Borrebaeck, C. A., and Ohlin, M. (2002) Antibody evolution beyond Nature, Nature biotechnology 20, 1189–1190.

    Article  PubMed  CAS  Google Scholar 

  75. Hallborn, J., and Carlsson, R. (2002) Automated screening procedure for high-throughput generation of antibody fragments, BioTechniques Suppl, 30–37.

    Google Scholar 

  76. Wingren, C., James, P., and Borrebaeck, C. A. (2009) Strategy for surveying the proteome using affinity proteomics and mass spectrometry, Proteomics 9, 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  77. Stoevesandt, O., and Taussig, M. J. (2007) Affinity reagent resources for human proteome detection: initiatives and perspectives, Proteomics 7, 2738–2750.

    Article  PubMed  CAS  Google Scholar 

  78. Hartmann, M., Schrenk, M., Dottinger, A., Nagel, S., Roeraade, J., Joos, T. O., and Templin, M. F. (2008) Expanding assay dynamics: a combined competitive and direct assay system for the quantification of proteins in multiplexed immunoassays, Clinical chemistry 54, 956–963.

    Article  PubMed  CAS  Google Scholar 

  79. Ewert, S., Huber, T., Honegger, A., and Pluckthun, A. (2003) Biophysical properties of human antibody variable domains, J Mol Biol 325, 531–553.

    Article  PubMed  CAS  Google Scholar 

  80. Worn, A., and Pluckthun, A. (2001) Stability engineering of antibody single-chain Fv fragments, J Mol Biol 305, 989–1010.

    Article  PubMed  CAS  Google Scholar 

  81. Ellmark, P., Ghatnekar-Nilsson, S., Meister, A., Heinzelmann, H., Montelius, L., Wingren, C., and Borrebaeck, C. A. (2009) Attovial-based antibody nanoarrays, Proteomics 9, 5406–5413.

    Article  PubMed  CAS  Google Scholar 

  82. Ghatnekar-Nilsson, S., Dexlin, L., Wingren, C., Montelius, L., and Borrebaeck, C. A. (2007) Design of atto-vial based recombinant antibody arrays combined with a planar wave-guide detection system, Proteomics 7, 540–547.

    Article  PubMed  CAS  Google Scholar 

  83. Dexlin, L., Ingvarsson, J., Frendeus, B., Borrebaeck, C.A.K., and Wingren, C. (2008) Design of recombinant antibody microarrays for cell surface membrane proteomics. J. Proteome Research 7, 319–327.

    Article  CAS  Google Scholar 

  84. Lundberg, K., Lindstedt, M., Larsson, K., Dexlin, L., Wingren, C., Ohlin, M., Greiff, L., and Borrebaeck, C. A. (2008) Augmented Phl p 5-specific Th2 response after exposure of dendritic cells to allergen in complex with specific IgE compared to IgG1 and IgG4, Clinical immunology (Orlando, Fla 128, 358–365.

    Google Scholar 

  85. Carlsson, A., Wingren, C., Ingvarsson, J., Ellmark, P., Baldertorp, B., Ferno, M., Olsson, H., and Borrebaeck, C. A. (2008) Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays, Eur J Cancer 44, 472–480.

    Article  PubMed  CAS  Google Scholar 

  86. Carlsson, A., Persson, O., Widegren, B., Salford, L.G., Borrebaeck, C.A.K., and Wingren, C. (2010) Plasma protein profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients. Proteomics Clinical Applications 4, 591–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish National Science Council (VR-NT), SSF, Strategic Center for Translational Cancer Research (CREATE Health) (http://www.createhealth.lth.se), and the Crafoord Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Wingren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Borrebaeck, C.A.K., Wingren, C. (2011). Recombinant Antibodies for the Generation of Antibody Arrays. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics