Skip to main content

Spermatogenesis in Cryptorchidism

  • Protocol
  • First Online:
Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 825))

Abstract

Cryptorchidism or undescended testis is the most frequent congenital abnormality in newborn boys. The process of testicular descent to the scrotum is controlled by hormones produced in Leydig cells, insulin-like3, and androgens. Variation in genetic and environmental factors might affect testicular descent. A failure of spermatogenesis and germ cell apoptosis resulting in infertility as well as an increased risk of neoplastic transformation of germ cell are the direct consequences of cryptorchidism in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthold JS, Gonzalez R (2003) The epidemiology of congenital cryptorchidism, ­testicular ascent and orchiopexy. J Urol 170:2396–2401.

    Article  PubMed  Google Scholar 

  2. Bogatcheva NV, Agoulnik AI (2005) INSL3/LGR8 role in testicular descent and cryptorchidism. Reprod Biomed Online 10:49–54.

    Article  PubMed  CAS  Google Scholar 

  3. Hutson JM, Hasthorpe S, Heyns CF (1997) Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr Rev 18:259–280.

    Article  PubMed  CAS  Google Scholar 

  4. Hutson JM, Balic A, Nation T, Southwell B(2010) Cryptorchidism. Semin Pediatr Surg 19:215–224.

    Article  PubMed  Google Scholar 

  5. Foresta C, Zuccarello D, Garolla A, Ferlin A (2008) Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 29:560–580.

    Article  PubMed  CAS  Google Scholar 

  6. Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, Schmidt IM, Chellakooty M, Damgaard IN, Mau C, Reunanen M, Skakkebaek NE, Toppari J (2004) Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363:1264–1269.

    Article  PubMed  CAS  Google Scholar 

  7. Preiksa RT, Zilaitiene B, Matulevicius V, Skakkebaek NE, Petersen JH, Jorgensen N, Toppari J (2005) Higher than expected prevalence of congenital cryptorchidism in Lithuania: a study of 1204 boys at birth and 1 year follow-up. Hum Reprod 20:1928–1932.

    Article  PubMed  CAS  Google Scholar 

  8. Paulozzi LJ (1999) International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 107:297–302.

    Article  PubMed  CAS  Google Scholar 

  9. Jones ME, Swerdlow AJ, Griffith M, Goldacre MJ (1998) Prenatal risk factors for cryptorchidism: a record linkage study. Paediatr Perinat Epidemiol 12:383–396.

    Article  PubMed  CAS  Google Scholar 

  10. Abdullah NA, Pearce MS, Parker L, Wilkinson JR, Jaffray B, McNally RJ (2007) Birth prevalence of cryptorchidism and hypospadias in northern England, 1993–2000. Arch Dis Child 92:576–579.

    Article  PubMed  CAS  Google Scholar 

  11. Acerini CL, Hughes IA (2006) Endocrine disrupting chemicals: a new and emerging public health problem? Arch Dis Child, 91:633–641.

    Article  PubMed  CAS  Google Scholar 

  12. Stillman RJ (1982) In utero exposure to diethylstilbestrol: adverse effects on the reproductive tract and reproductive performance and male and female offspring. Am J Obstet Gynecol, 142:905–921.

    PubMed  CAS  Google Scholar 

  13. Sharpe RM (2003) The ‘oestrogen hypothesis’- where do we stand now? Int J Androl 26:2–15.

    Article  PubMed  CAS  Google Scholar 

  14. Cederroth CR, Schaad O, Descombes P, Chambon P, Vassalli JD, Nef S (2007) Estrogen receptor alpha is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology 148:5507–5519.

    Article  PubMed  CAS  Google Scholar 

  15. Giordano F, Carbone P, Nori F, Mantovani A, Taruscio D, Figa-Talamanca I (2008) Maternal diet and the risk of hypospadias and cryptorchidism in the offspring. Paediatr Perinat Epidemiol 22:249–260.

    Article  PubMed  Google Scholar 

  16. Main KM, Kiviranta H, Virtanen HE, Sundqvist E, Tuomisto JT, Tuomisto J, Vartiainen T, Skakkebaek NE, Toppari J (2007) Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ Health Perspect 115:1519–1526.

    PubMed  CAS  Google Scholar 

  17. Damgaard IN, Jensen TK, Petersen JH, Skakkebaek NE, Toppari J, Main KM (2007) Cryptorchidism and maternal alcohol consumption during pregnancy. Environ Health Perspect 115:272–277.

    Article  PubMed  CAS  Google Scholar 

  18. Kurahashi N, Kasai S, Shibata T, Kakizaki H, Nonomura K, Sata F, Kishi R (2005) Parental and neonatal risk factors for cryptorchidism. Med Sci Monit 11:CR274–283.

    Google Scholar 

  19. Moller H, Skakkebaek NE: (1997) Testicular cancer and cryptorchidism in relation to prenatal factors: case-control studies in Denmark. Cancer Causes Control 8:904–912.

    Article  PubMed  CAS  Google Scholar 

  20. Biggs ML, Baer A, Critchlow CW (2002) Maternal, delivery, and perinatal characteristics associated with cryptorchidism: a population-based case-control study among births in Washington State. Epidemiology, 13:197–204.

    Article  PubMed  Google Scholar 

  21. Jensen MS, Toft G, Thulstrup AM, Bonde JP, Olsen J (2007) Cryptorchidism according to maternal gestational smoking. Epidemiology 18:220–225.

    Article  PubMed  Google Scholar 

  22. Akre O, Lipworth L, Cnattingius S, Sparen P, Ekbom A (1999) Risk factor patterns for cryptorchidism and hypospadias. Epidemiology 10:364–369.

    Article  PubMed  CAS  Google Scholar 

  23. Virtanen HE, Tapanainen AE, Kaleva MM, Suomi AM, Main KM, Skakkebaek NE, Toppari J (2006) Mild gestational diabetes as a risk factor for congenital cryptorchidism. J Clin Endocrinol Metab 91:4862–4865.

    Article  PubMed  CAS  Google Scholar 

  24. Main KM, Jensen RB, Asklund C, Hoi-Hansen CE, Skakkebaek NE (2006) Low birth weight and male reproductive function. Horm Res 65 Suppl 3:116–122.

    Article  PubMed  CAS  Google Scholar 

  25. Barteczko KJ, Jacob MI (2000) The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv Anat Embryol Cell Biol 156:III-X, 1–98.

    Google Scholar 

  26. Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 13:681–691.

    Article  PubMed  CAS  Google Scholar 

  27. Nef S, Parada LF (1999) Cryptorchidism in mice mutant for Insl3. Nat Genet 22:295–299.

    Article  PubMed  CAS  Google Scholar 

  28. Adham IM, Agoulnik AI (2004) Insulin-like 3 signalling in testicular descent. Int J Androl 27:257–265.

    Article  PubMed  CAS  Google Scholar 

  29. Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL, Bishop CE, Agoulnik AI (2001) A transgenic insertion causing cryptorchidism in mice. Genesis 30:26–35.

    Article  PubMed  CAS  Google Scholar 

  30. Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, Bishop CE, McElreavey K, Agoulnik AI (2002) Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet 11:2309–2318.

    Article  PubMed  CAS  Google Scholar 

  31. Adham IM, Steding G, Thamm T, Bullesbach EE, Schwabe C, Paprotta I, Engel W (2002) The overexpression of the insl3 in female mice causes descent of the ovaries. Mol Endocrinol 16:244–252.

    Article  PubMed  CAS  Google Scholar 

  32. Kaftanovskaya EM, Feng S, Huang Z, Tan Y, Barbara AM, Kaur S, Truong A, Gorlov IP, Agoulnik AI: (2011) Suppression of Insulin-like3 receptor reveals the role of beta-catenin and Notch signaling in gubernaculum development. Mol Endocrinol 25:170–183.

    Article  PubMed  CAS  Google Scholar 

  33. Bay K, Main KM, Toppari J, Skakkebaek NE: (2011) Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol March 15 [Epub ahead of print] PMID 21403659.

    Google Scholar 

  34. van der Schoot P (1996) Towards a rational terminology in the study of the gubernaculum testis: arguments in support of the notion that the cremasteric sac should be considered the gubernaculum in postnatal rats and other mammals. J Anat 189 (Pt 1):97–108.

    PubMed  Google Scholar 

  35. Klonisch T, Fowler PA, Hombach-Klonisch S (2004) Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol 270:1–18.

    Article  PubMed  CAS  Google Scholar 

  36. Feng S, Bogatcheva NV, Truong A, Engel W, Adham IM, Agoulnik AI (2006) Over expression of insulin-like 3 does not prevent cryptorchidism in GNRHR or HOXA10 deficient mice. J Urol 176:399–404.

    Article  PubMed  CAS  Google Scholar 

  37. Pask AJ, Kanasaki H, Kaiser UB, Conn PM, Janovick JA, Stockton DW, Hess DL, Justice MJ, Behringer RR (2005) A novel mouse model of hypogonadotrophic hypogonadism: N-ethyl-N-nitrosourea-induced gonadotropin-releasing hormone receptor gene mutation. Mol Endocrinol 19:972–981.

    Article  PubMed  CAS  Google Scholar 

  38. Bogatcheva NV, Ferlin A, Feng S, Truong A, Gianesello L, Foresta C, Agoulnik AI (2007) T222P mutation of the insulin-like 3 ­hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Am J Physiol Endocrinol Metab 292:E138–144.

    Article  PubMed  CAS  Google Scholar 

  39. El Houate B, Rouba H, Imken L, Sibai H, Chafik A, Boulouiz R, Chadli E, Hassar M, McElreavey K, Barakat A (2008) No association between T222P/LGR8 mutation and cryptorchidism in the Moroccan population. Horm Res 70:236–239.

    Article  PubMed  CAS  Google Scholar 

  40. Feng S, Ferlin A, Truong A, Bathgate R, Wade JD, Corbett S, Han S, Tannour-Louet M, Lamb DJ, Foresta C, Agoulnik AI (2009) INSL3/RXFP2 signaling in testicular descent. Ann N Y Acad Sci 1160:197–204.

    Article  PubMed  CAS  Google Scholar 

  41. Ars E, Lo Giacco D, Bassas L, Nuti F, Rajmil O, Ruiz P, Garat JM, Ruiz-Castane E, Krausz C (2010) Further insights into the role of T222P variant of RXFP2 in non-syndromic cryptorchidism in two Mediterranean populations. Int J Androl July 16 [Epub ahead of print] PMID20636340.

    Google Scholar 

  42. Yoshida R, Fukami M, Sasagawa I, Hasegawa T, Kamatani N, Ogata T (2005) Association of cryptorchidism with a specific haplotype of the estrogen receptor alpha gene: implication for the susceptibility to estrogenic environmental endocrine disruptors. J Clin Endocrinol Metab 90:4716–4721.

    Article  PubMed  CAS  Google Scholar 

  43. Wang Y, Barthold J, Figueroa E, Gonzalez R, Noh PH, Wang M, Manson J (2008) Analysis of five single nucleotide polymorphisms in the ESR1 gene in cryptorchidism. Birth Defects Res A Clin Mol Teratol 82:482–485.

    Article  PubMed  CAS  Google Scholar 

  44. Galan JJ, Guarducci E, Nuti F, Gonzalez A, Ruiz M, Ruiz A, Krausz C (2007) Molecular analysis of estrogen receptor alpha gene AGATA haplotype and SNP12 in European populations: potential protective effect for cryptorchidism and lack of association with male infertility. Hum Reprod 22:444–449.

    Article  PubMed  CAS  Google Scholar 

  45. Li Y, Zhou Q, Hively R, Yang L, Small C, Griswold MD (2009) Differential gene expression in the testes of different murine strains under normal and hyperthermic conditions. J Androl 30:325–337.

    Article  PubMed  CAS  Google Scholar 

  46. Li YC, Hu XQ, Xiao LJ, Hu ZY, Guo J, Zhang KY, Song XX, Liu YX (2006) An ­oligonucleotide microarray study on gene expression profile in mouse testis of experimental cryptorchidism. Front Biosci 11:2465–2482.

    Article  PubMed  CAS  Google Scholar 

  47. Ahotupa M, Huhtaniemi I (1992) Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod 46:1114–1118.

    Article  PubMed  CAS  Google Scholar 

  48. Peltola V, Huhtaniemi I, Ahotupa M (1995) Abdominal position of the rat testis is associated with high level of lipid peroxidation. Biol Reprod 53:1146–1150.

    Article  PubMed  CAS  Google Scholar 

  49. Liu Y, Li X (2010) Molecular basis of cryptorchidism-induced infertility. Sci China Life Sci 53:1274–1283.

    Article  PubMed  CAS  Google Scholar 

  50. Lee PA, Coughlin MT (2002) Leydig cell function after cryptorchidism: evidence of the beneficial result of early surgery. J Urol 167:1824–1827.

    Article  PubMed  Google Scholar 

  51. Hadziselimovic F, Thommen L, Girard J, Herzog B (1986) The significance of postnatal gonadotropin surge for testicular development in normal and cryptorchid testes. J Urol 136:274–276.

    PubMed  CAS  Google Scholar 

  52. Taran I, Elder JS (2006) Results of orchiopexy for the undescended testis. World J Urol 24:231–239.

    Article  PubMed  Google Scholar 

  53. Barthold JS, McCahan SM, Singh AV, Knudsen TB, Si X, Campion L, Akins RE (2008) Altered expression of muscle- and cytoskeleton-related genes in a rat strain with inherited cryptorchidism. J Androl 29:352–366.

    Article  PubMed  CAS  Google Scholar 

  54. Nguyen MT, Delaney DP, Kolon TF (2009) Gene expression alterations in cryptorchid males using spermatozoal microarray analysis. Fertil Steril 92:182–187.

    Article  PubMed  CAS  Google Scholar 

  55. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002.

    Article  PubMed  CAS  Google Scholar 

  56. Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20:14–24.

    Article  PubMed  CAS  Google Scholar 

  57. Yin Y, DeWolf WC, Morgentaler A (1998) Experimental cryptorchidism induces testicular germ cell apoptosis by p53-dependent and -independent pathways in mice. Biol Reprod 58:492–496.

    Article  PubMed  CAS  Google Scholar 

  58. Yin Y, Stahl BC, DeWolf WC, Morgentaler A (2002) P53 and Fas are sequential mechanisms of testicular germ cell apoptosis. J Androl 23:64–70.

    PubMed  CAS  Google Scholar 

  59. Mu X, Liu Y, Collins LL, Kim E, Chang C (2000) The p53/retinoblastoma-mediated repression of testicular orphan receptor-2 in the rhesus monkey with cryptorchidism. J Biol Chem 275:23877–23883.

    Article  PubMed  CAS  Google Scholar 

  60. Li W, Bao W, Ma J, Liu X, Xu R, Wang RA, Zhang Y (2008) Metastasis tumor antigen 1 is involved in the resistance to heat stress-induced testicular apoptosis. FEBS Lett 582:869–873.

    Article  PubMed  CAS  Google Scholar 

  61. Kumagai J, Fukuda J, Kodama H, Murata M, Kawamura K, Itoh H, Tanaka T (2000) Germ cell-specific heat shock protein 105 binds to p53 in a temperature-sensitive manner in rat testis. Eur J Biochem 267:3073–3078.

    Article  PubMed  CAS  Google Scholar 

  62. Izu H, Inouye S, Fujimoto M, Shiraishi K, Naito K, Nakai A (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol Reprod 70:18–24.

    Article  PubMed  CAS  Google Scholar 

  63. Widlak W, Winiarski B, Krawczyk A, Vydra N, Malusecka E, Krawczyk Z (2007) Inducible 70 kDa heat shock protein does not protect spermatogenic cells from damage induced by cryptorchidism. Int J Androl 30:80–87.

    Article  PubMed  CAS  Google Scholar 

  64. Zhou XC, Han XB, Hu ZY, Zhou RJ, Liu YX (2001) Expression of Hsp70-2 in unilateral cryptorchid testis of rhesus monkey during germ cell apoptosis. Endocrine 16:89–95.

    Article  PubMed  CAS  Google Scholar 

  65. Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sato Y, Sakurai M, Noda M, Aoki S, Yoshikawa Y, Wada K (2004) Two closely related ubiquitin C-terminal hydrolase isozymes function as reciprocal modulators of germ cell apoptosis in cryptorchid testis. Am J Pathol 165:1367–1374.

    Article  PubMed  CAS  Google Scholar 

  66. Ishii T, Matsuki S, Iuchi Y, Okada F, Toyosaki S, Tomita Y, Ikeda Y, Fujii J (2005) Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free Radic Res 39:697–705.

    Article  PubMed  CAS  Google Scholar 

  67. Zini A, Schlegel PN(1997) Cu/Zn superoxide dismutase, catalase and glutathione peroxidase mRNA expression in the rat testis after surgical cryptorchidism and efferent duct ligation. J Urol 158:659–663.

    Google Scholar 

  68. Ishikawa T, Kondo Y, Goda K, Fujisawa M (2005) Overexpression of endothelial nitric oxide synthase in transgenic mice accelerates testicular germ cell apoptosis induced by experimental cryptorchidism. J Androl 26:281–288.

    PubMed  CAS  Google Scholar 

  69. DeFoor WR, Kuan CY, Pinkerton M, Sheldon CA, Lewis AG (2004) Modulation of germ cell apoptosis with a nitric oxide synthase inhibitor in a murine model of congenital cryptorchidism. J Urol 172:1731–1735; discussion 1735.

    Google Scholar 

  70. Mizuno K, Hayashi Y, Kojima Y, Nakane A, Tozawa K, Kohri K (2009) Activation of NF-kappaB associated with germ cell apoptosis in testes of experimentally induced cryptorchid rat model. Urology 73:389–393.

    Article  PubMed  Google Scholar 

  71. Yuan JL, Zhang YT, Wang Y (2010) Increased apoptosis of spermatogenic cells in cryptorchidism rat model and its correlation with transforming growth factor beta type II receptor. Urology 75:992–998.

    Article  PubMed  Google Scholar 

  72. Kubota H, Sasaki S, Kubota Y, Umemoto Y, Yanai Y, Tozawa K, Hayashi Y, Kohri K (2011) Cyclooxygenase-2 Protects Germ Cells Against Spermatogenesis Disturbance in Experimental Cryptorchidism Model Mice. J Androl 32(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  73. Gu C, Tong Q, Zheng L, Liang Z, Pu J, Mei H, Hu T, Du Z, Tian F, Zeng F (2010) TSEG-1, a novel member of histone H2A variants, participates in spermatogenesis via promoting apoptosis of spermatogenic cells. Genomics 95:278–289.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang ZH, Hu ZY, Song XX, Xiao LJ, Zou RJ, Han CS, Liu YX (2004) Disrupted expression of intermediate filaments in the testis of rhesus monkey after experimental cryptorchidism. Int J Androl 27:234–239.

    Article  PubMed  Google Scholar 

  75. Wang ZQ, Watanabe Y, Toki A, Itano T (2002) Altered distribution of Sertoli cell vimentin and increased apoptosis in cryptorchid rats. J Pediatr Surg 37:648–652.

    Article  PubMed  Google Scholar 

  76. Maekawa M, Kazama H, Kamimura K, Nagano T (1995) Changes in the arrangement of actin filaments in myoid cells and Sertoli cells of rat testes during postnatal development and after experimental cryptorchidism. Anat Rec 241:59–69.

    Article  PubMed  CAS  Google Scholar 

  77. Danno S, Itoh K, Matsuda T, Fujita J (2000) Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am J Pathol 156:1685–1692.

    Article  PubMed  CAS  Google Scholar 

  78. Monet-Kuntz C, Barenton B, Locatelli A, Fontaine I, Perreau C, Hochereau-de Reviers MT (1987) Effects of experimental cryptorchidism and subsequent orchidopexy on seminiferous tubule functions in the lamb. J Androl 8:148–154.

    PubMed  CAS  Google Scholar 

  79. Jansz GF, Pomerantz DK (1986) A comparison of Leydig cell function after unilateral and bilateral cryptorchidism and efferent-duct-ligation. Biol Reprod 34:316–321.

    Article  PubMed  CAS  Google Scholar 

  80. Mendis-Handagama SM, Kerr JB, de Kretser DM (1990) Experimental cryptorchidism in the adult mouse: II. A hormonal study. J Androl 11:548–554.

    CAS  Google Scholar 

  81. Murphy L, O’Shaughnessy PJ (1991) Effect of cryptorchidism on testicular and Leydig cell androgen production in the mouse. Int J Androl 14:66–74.

    Article  PubMed  CAS  Google Scholar 

  82. Hedger MP, McFarlane JR, de Kretser DM, Risbridger GP (1994) Multiple factors with steroidogenesis-regulating activity in testicular intertubular fluid from normal and experimentally cryptorchid adult rats. Steroids 59:676–685.

    Article  PubMed  CAS  Google Scholar 

  83. Wu N, Murono EP: (1996)Temperature and germ cell regulation of Leydig cell proliferation stimulated by Sertoli cell-secreted mitogenic factor: a possible role in cryptorchidism. Andrologia 28:247–257.

    Article  PubMed  CAS  Google Scholar 

  84. Hejmej A, Kotula-Balak M, Sadowska J, Bilinska (2007) Expression of connexin 43 protein in testes, epididymides and prostates of stallions. Equine Vet J 39:122–127.

    Google Scholar 

  85. Mizuno K, Kojima Y, Kurokawa S, Maruyama T, Sasaki S, Kohri K, Hayashi Y (2009) Identification of differentially expressed genes in human cryptorchid testes using suppression subtractive hybridization. J Urol 181:1330–1337; discussion 1337.

    Google Scholar 

  86. Hirai T, Tsujimura A, Ueda T, Fujita K, Matsuoka Y, Takao T, Miyagawa Y, Koike N, Okuyama A: (2009) Effect of 1,25-dihydroxyvitamin d on testicular morphology and gene expression in experimental cryptorchid mouse: testis specific cDNA microarray analysis and potential implication in male infertility. J Urol 181:1487–1492.

    Article  PubMed  CAS  Google Scholar 

  87. Orwig KE, Ryu BY, Master SR, Phillips BT, Mack M, Avarbock MR, Chodosh L, Brinster RL (2008) Genes involved in post-transcriptional regulation are overrepresented in stem/progenitor spermatogonia of cryptorchid mouse testes. Stem Cells 26:927–938.

    Article  PubMed  CAS  Google Scholar 

  88. Hadziselimovic F, Hadziselimovic NO, Demougin P, Krey G, Hoecht B, Oakeley EJ (2009) EGR4 is a master gene responsible for fertility in cryptorchidism. Sex Dev 3:253–263.

    Article  PubMed  CAS  Google Scholar 

  89. Hadziselimovic NO, de Geyter C, Demougin P, Oakeley EJ, Hadziselimovic F (2010) Decreased expression of FGFR1, SOS1, RAF1 genes in cryptorchidism. Urol Int 84:353–361.

    Article  PubMed  CAS  Google Scholar 

  90. Rohozinski J, Bishop CE: (2004) The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene, mUtp14b. Proc Natl Acad Sci USA 101:11695–11700.

    Article  PubMed  CAS  Google Scholar 

  91. Bradley J, Baltus A, Skaletsky H, Royce-Tolland M, Dewar K, Page DC (2004) An X-to-autosome retrogene is required for spermatogenesis in mice. Nat Genet 36:872–876.

    Article  PubMed  CAS  Google Scholar 

  92. Shetty G, Weng CC (2004) Cryptorchidism rescues spermatogonial differentiation in juvenile spermatogonial depletion (jsd) mice. Endocrinology 145:126–133.

    Article  PubMed  CAS  Google Scholar 

  93. Ries L, Melbert, D., Krapcho, M et al (2008) National Cancer Institute 1975–2005. SEER cancer statistics review.

    Google Scholar 

  94. Kinkade S (1999) Testicular cancer. Am Fam Physician, 59:2539–2544, 2549–2550.

    Google Scholar 

  95. Campbell H (1942) Incidence of malignant growth of the undescended testicle. Arch Surg 44:353–369.

    Article  Google Scholar 

  96. Wood HM, Elder JS (2009) Cryptorchidism and testicular cancer: separating fact from fiction. J Urol 181:452–461.

    Article  PubMed  Google Scholar 

  97. Kanto S, Hiramatsu M, Suzuki K, Ishidoya S, Saito H, Yamada S, Satoh M, Saito S, Fukuzaki A, Arai Y (2004) Risk factors in past histories and familial episodes related to development of testicular germ cell tumor. Int J Urol 11:640–646.

    Article  PubMed  Google Scholar 

  98. Batata MA, Whitmore WF, Jr., Chu FC, Hilaris BS, Loh J, Grabstald H, Golbey R (1980) Cryptorchidism and testicular cancer. J Urol 124:382–387.

    PubMed  CAS  Google Scholar 

  99. Dieckmann KP, Pichlmeier U: (2004) Clinical epidemiology of testicular germ cell tumors. World J Urol 22:2–14.

    Article  PubMed  Google Scholar 

  100. Pettersson A, Richiardi L, Nordenskjold A, Kaijser M, Akre O: (2007) Age at surgery for undescended testis and risk of testicular cancer. N Engl J Med 356:1835–1841.

    Article  PubMed  CAS  Google Scholar 

  101. Walsh TJ, Dall’Era MA, Croughan MS, Carroll PR, Turek PJ (2007) Prepubertal orchiopexy for cryptorchidism may be associated with lower risk of testicular cancer. J Urol 178:1440–1446; discussion 1446.

    Google Scholar 

  102. Myrup C, Schnack TH, Wohlfahrt J (2007) Correction of cryptorchidism and testicular cancer. N Engl J Med 357:825–827; author reply 825–827.

    Google Scholar 

  103. Mathers MJ, Sperling H, Rubben H, Roth S (2009) The undescended testis: diagnosis, treatment and long-term consequences. Dtsch Arztebl Int 106:527–532.

    PubMed  Google Scholar 

  104. Akre O, Richiardi L (2009) Does a testicular dysgenesis syndrome exist? Hum Reprod 24:2053–2060.

    Article  PubMed  Google Scholar 

  105. Swerdlow AJ, Higgins CD, Pike MC: (1997) Risk of testicular cancer in cohort of boys with cryptorchidism. BMJ 314:1507–1511.

    Article  PubMed  CAS  Google Scholar 

  106. Mieusset R, Fouda PJ, Vaysse P, Guitard J, Moscovici J, Juskiewenski S (1993) Increase in testicular temperature in case of cryptorchidism in boys. Fertil Steril 59:1319–1321.

    PubMed  CAS  Google Scholar 

  107. Guminska A, Slowikowska-Hilczer J, Kuzanski W, Sosnowski M, Oszukowska E, Marchlewska K, Walczak-Jedrzejowska R, Niedzielski J, Kula K (2007) Features of impaired seminiferous tubule differentiation are associated with germ cell neoplasia in adult men surgically treated in childhood because of cryptorchidism. Folia Histochem Cytobiol 45 Suppl 1:S163-168.

    PubMed  Google Scholar 

  108. Martin DC (1982) Malignancy in the cryptorchid testis. Urol Clin North Am 9:371–376.

    PubMed  CAS  Google Scholar 

  109. Kanetsky PA, Mitra N, Vardhanabhuti S, Li M, Vaughn DJ, Letrero R, Ciosek SL, Doody DR, Smith LM, Weaver J, Albano A, Chen C, Starr JR, Rader DJ, Godwin AK, Reilly MP, Hakonarson H, Schwartz SM, Nathanson KL (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41:811–815.

    Article  PubMed  CAS  Google Scholar 

  110. Rapley EA, Turnbull C, Al Olama AA, Dermitzakis ET, Linger R, Huddart RA, Renwick A, Hughes D, Hines S, Seal S, Morrison J, Nsengimana J, Deloukas P; UK Testicular Cancer Collaboration, Rahman N, Bishop DT, Easton DF, Stratton MR (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41:807–810.

    Article  PubMed  CAS  Google Scholar 

  111. Heaney JD, Lam MY, Michelson MV, Nadeau JH: (2008) Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res 68:5193–5197.

    Article  PubMed  CAS  Google Scholar 

  112. Ghirri P, Ciulli C, Vuerich M, Cuttano A, Faraoni M, Guerrini L, Spinelli C, Tognetti S, Boldrini A (2002) Incidence at birth and natural history of cryptorchidism: a study of 10,730 consecutive male infants. J Endocrinol Invest 25:709–715.

    PubMed  CAS  Google Scholar 

  113. Baldessarini RJ, Kula NS, Campbell A, Bakthavachalam V, Yuan J, Neumeyer JL (1992) Prolonged D2 antidopaminergic activity of alkylating and nonalkylating derivatives of spiperone in rat brain. Mol Pharmacol 42:856–863.

    PubMed  CAS  Google Scholar 

  114. Berkowitz GS, Lapinski RH, Dolgin SE, Gazella JG, Bodian CA, Holzman IR (1993) Prevalence and natural history of cryptorchidism. Pediatrics 92:44–49.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in Dr. Agoulnik laboratory is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institute of Health grant R01HD37067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Agoulnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Agoulnik, A.I., Huang, Z., Ferguson, L. (2012). Spermatogenesis in Cryptorchidism. In: Chan, WY., Blomberg, L. (eds) Germline Development. Methods in Molecular Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-436-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-436-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-435-3

  • Online ISBN: 978-1-61779-436-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics