Skip to main content

Potential sources of increased iron in the substantia nigra of parkinsonian patients

  • Conference paper
Parkinson’s Disease and Related Disorders

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 70))

Summary

Histopathological, biochemical and in vivo brain imaging techniques, such as magnetic resonance imaging and transcranial sonography, revealed a consistent increase of substantia nigra (SN) iron in Parkinson’s disease (PD). Increased iron deposits in the SN may have genetic and non-genetic causes. There are several rare movement disorders associated with neurodegeneration, and genetic abnormalities in iron regulation resulting in iron deposition in the brain. Non-genetic causes of increased SN iron may be the result of a disturbed or open blood-brain-barrier, local changes in the normal iron-regulatory systems, intraneuronal transportation of iron from iron-rich area into the SN and release of iron from intracellular iron storage molecules. Major iron stores are ferritin and haemosiderin in glial cells as well as neuromelanin in neurons. Age- and disease dependent overload of iron storage proteins may result in iron release upon reduction. Consequently, the low molecular weight chelatable iron complexes may trigger redox reactions leading to damage of biomolecules. Additionally, upon neurodegeneration there is strong microglial activation which can be another source of high iron concentrations in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisen P, Leibman A (1972) Lactoferrin and transferrin: a comparative study. Biochem Biophys Acta 257: 314–323

    PubMed  CAS  Google Scholar 

  • Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3: 200–206

    Article  PubMed  CAS  Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN (1989) Structure of human lactoferrin: crystal-lographic structure analysis and refinement at 2.8A resolution. J Molec Biol 209: 711–734

    Article  PubMed  CAS  Google Scholar 

  • Andrew R, Watson DG, Bet SA, Midgley JM, Wenlong H, Perry RK (1993) The determination of 6-hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18: 1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Biemond P, Van Eijk H, Swaak A, Koster J (1984) Iron mobilisation from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes: possible mechanism in inflammation diseases. J Clin Invest 73: 1576–1579

    Article  PubMed  CAS  Google Scholar 

  • Birgens HS (1991) The interaction of lactoferrin with human monocytes. Dan Med Bull 38: 244–252

    PubMed  CAS  Google Scholar 

  • Boyer RE, Grabill T, Petrovich R (1988) Reactive release of ferritin iron: a kinetic assay. Anal Biochem 174: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin and iron in normal and aged human brains. J Neurosci Res 27: 595–611

    Article  PubMed  CAS  Google Scholar 

  • Connor J, Synder BS, Beard JL, Fine R, Mufson, E (1992) Regional distribution of iron and ironregulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Boeshore KL, Benkovic SA, Menzies SL (1994) Isoforms of ferritin have a specific cellular distribution in the brain. J Neurosci Res 37: 461–465

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in selected regions of aged, parkinsonian and Alzheimer’s diseased brains. J Neurochem 65: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Davidson LA, Lonnerdal B (1989) Fe-saturation and proteolysis of human lactoferrin: effect on brushborder receptor mediated uptake of Fe and Mn. Am J Physiol 2257: G930–G934

    Google Scholar 

  • Dexter DT, Carayon A, Vihailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain of Parkinson’s disease. J Neurochem 55: 16–20

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70: 2492–2499

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Riederer P, Gerlach M (1999) The significance of neuromelanin for neurodegeneration in Parkinson’s disease. Drug News Perspect 12: 333–340

    CAS  Google Scholar 

  • Double KL, Gerlach M, Youdim MBH, Riederer P (2000) Impaired iron homeostasis in Parkinson’s disease. J Neural Transm [Suppl] 60: 37–58

    Google Scholar 

  • Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar D (2003) Iron binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Dwork A, Lawler G, Zybert P, Durkin M, Osman M, Willson N, Barkai A (1990) An autoradiographic study of the uptake and distribution of iron by the brain of young rat. Brain Res 518: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92: 9603–9607

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Hauw J, Agid Y, Hirsch EC (1997) The density of [125I]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson’s disease. Brain Res 749: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Federow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double K (2005) Neuromelanin in human dopamine neurons: comparison with pheripheral melanins and relevance to Parkinson’s disease. Progr Neurobiol 75: 109–124

    Article  CAS  Google Scholar 

  • Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, Cecchelli R, Pierce A (1999a) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274: 7011–7017

    Article  PubMed  CAS  Google Scholar 

  • Fillebeen C, Mitchell V, Dexter D, Benaissa M, Beauvillain JC, Spik G, Pierce A (1999b) Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Mol Brain Res 72: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Trautwein AX, Zecca L, Youdim MBH, Riederer P (1995) Mössbauer spectroscopic studies of human neuromelanin isolated from the substantia nigra. J Neurochem 65: 923–926

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Double K, Götz ME, Youdim MBH, Riederer P (2006) The role of iron in the pathogenesis of Parkinson’s disease. In: Sigel A, Sigel H, Sigel RKO (eds) Neurodegenerative Diseases and Metal Ions, Vol 1 of Metal Ions in Life Sciences. Wiley & Sons, Chichester (in press)

    Google Scholar 

  • Good P, Olanow C, Perl D (1992) Neuromelanincontaining neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Götz ME, Double K, Gerlach M, Youdim MBH, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NYAcad Sci 1012: 193–208

    Article  CAS  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on non-haem iron in the human brain. J Neurochem 3: 41–51

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1986) Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem Sci 11: 1372–1375

    Article  Google Scholar 

  • He Y, Thong PS, Lee T, Leong SK, Mao BY, Dong F, Watt F (2003) Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Rad Biol Med 35: 540–547

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel A, Agid Y (1988) Melanized dopamine neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Connor J (1996) Demonstration and characterization of the iron regulatory protein in human brain. J Neurochem 67: 838–844

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Calne DB (eds) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg, pp 47–112

    Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s disease and Alzheimer’s disease. J Neural Transm [PD Sect] 2: 327–340

    Article  CAS  Google Scholar 

  • Jellinger K, Kienzel E, Rumpelmair G, Riederer P, Stachellberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH (1995) Chemical evidence for 6-hydroxy-dopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm [Suppl] 46: 297–314

    CAS  Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson R (1995) The role of transition metals in the pathogenesis of Parkinson’s diease. J Neurol Sci 134: 69–78

    Article  PubMed  Google Scholar 

  • Kortekaas R, Leenders KL, van Oostrom JCH, Vaalburg W, Bart J, Willemsen ATM, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57: 76–179

    Article  CAS  Google Scholar 

  • Lapenna D, Degioia S, Ciofani G, Cuccurullo F (1995) Captopril induces iron release from ferritin and oxidative stress. J Pharm Pharmacol 47: 59–61

    CAS  Google Scholar 

  • Leveugle B, Faucheux B, Bouras C, Nillesse N, Spik G, Hirsch E, Agid Y, Hof P (1996) Cellular distribution of the iron-binding protein lactoferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 91: 566–572

    Article  PubMed  CAS  Google Scholar 

  • Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta [Molec Basis Dis] 1316: 160–168

    Article  Google Scholar 

  • Logroscino G, Marder K, Graziano J, Freyer G, Slavkovich V, LoIacono N, Cote L, Mayeux R (1997) Altered systemic iron metabolism in Parkinson’s disease. Neurology 49: 714–717

    PubMed  CAS  Google Scholar 

  • Lopiano L, Digilio G, Fasano M, Giraudo S, Rizzone M, Torre E, Bergamasco B (1999) Iron and neuromelanin in Parkinson’s disease. J Neural Transm 106: XXIV

    Google Scholar 

  • Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, Schapira AH (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881

    Article  PubMed  CAS  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress and DNA damage. Free Radic Biol Med 23: 783–792

    Article  PubMed  CAS  Google Scholar 

  • Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4177–4182

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Candy J, Omar S, Bloxham C, Edwardson J (1994) Transferrin receptors in the parkinsonian midbrain. Neuropathol Appl Neurobiol 20: 468–472

    PubMed  CAS  Google Scholar 

  • Napolitano A, Crescenzi O, Pezzella A, Prota G (1995) Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. J Med Chem 38: 917–922

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash GW (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18

    Article  PubMed  CAS  Google Scholar 

  • Ponka P (1999) Cellular iron metabolism. Kidney Int [Suppl 69] 55: 2–11

    Article  Google Scholar 

  • Riederer P (2004) Views on neurodegeneration as a basis for neuroprotective strategies. Med Sci Monit 10(12): RA287–RA290

    CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Kruzik P, Youdim MBH (1985) Dopaminforschungheute undmorgen — L-Dopa in der Zukunft. In: Riederer P, Vmek H (eds) L-Dopa-Substitution der Parkinson-Krankheit. Geschichte-Gegenwart-Zukunft. Springer, Wien New York, pp 127–144

    Google Scholar 

  • Riederer P, Rausch WD, Schmidt B, Kruzik C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55: 21–28

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Rief D, Simmons R (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283: 537–541

    Article  Google Scholar 

  • Schipper HM (2000) Heme oxygenase-1, role in brain ageing and neurodegeneration. Exp Gerontol 35: 821–830

    Article  PubMed  CAS  Google Scholar 

  • Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37: 1995–2011

    Article  PubMed  CAS  Google Scholar 

  • Sian J, Gerlach M, Youdim MBH, Riederer P (1999) Parkinson’s disease: a major hypokinetic basal ganglia disorder. J Neural Transm 106: 443–476

    Article  PubMed  CAS  Google Scholar 

  • Shima T, Sarna T, Swartz H, Stroppolo A, Gerbasi R, Zecca L (1997) Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 23: 110–119

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Wehr K, Harris PLR, Siedlak SL, Connor JR, Perry G (1998) Abnormal localisation of iron regulatory protein in Alzheimer’s disease. Brain Res 788: 232–236

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56: 978–982

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17: 437–442

    Article  PubMed  Google Scholar 

  • Thomson A, Rogers J, Leedman P (1999) Iron regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J BiochemCell Biol 31: 1139–1152

    Article  CAS  Google Scholar 

  • Torsdottir G, Kristinsson J, Sveinbjornsdottier S, Snaedal J, Jahannesson T (1999) Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol Toxicol 85: 239–243

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Amagasaki T, Jacobsen DW, Green R (1987) Lactoferrin binding by leukemia cell lines. Blood 70: 264–270

    PubMed  CAS  Google Scholar 

  • Yoshida T, Tanaka M, Sotomatsu A, Hirai S (1995) Activated microglia cause superoxide-mediated release of iron from ferritin. Neurosci Lett 190: 21–24

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand [Suppl 126] 80: 47–54

    Article  Google Scholar 

  • Youdim M, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 8: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Swartz HM (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm [PD Sect] 5: 203–213

    Article  CAS  Google Scholar 

  • Zecca L, Shima T, Stroppolo A, Goj C, Battiston A, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5: 863–873

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Gerlach, M., Double, K.L., Youdim, M.B.H., Riederer, P. (2006). Potential sources of increased iron in the substantia nigra of parkinsonian patients. In: Riederer, P., Reichmann, H., Youdim, M.B.H., Gerlach, M. (eds) Parkinson’s Disease and Related Disorders. Journal of Neural Transmission. Supplementa, vol 70. Springer, Vienna . https://doi.org/10.1007/978-3-211-45295-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-45295-0_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28927-3

  • Online ISBN: 978-3-211-45295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics