Skip to main content

Peanut

  • Chapter
Book cover Oilseeds

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts MG, te Lintel HB, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant-Micr Interact 11:251–258

    CAS  Google Scholar 

  • Akbar MA (1989) Resynthesis of Brassica napus aiming for improved earliness and carried out by different approaches. Hereditas 111:239–246

    Google Scholar 

  • Anderson WF, Holbrook CC, Culbreath AK (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Google Scholar 

  • Beavis WD (1998) QTL analysis: power, precision and accuracy. In: Paterson AH (ed) Molecular Analysis of Complex Traits. CRC, Boca Raton, FL, pp 145–161

    Google Scholar 

  • Bertioli DJ, Leal-Bertioli SCM, Lion MB, Santos V, Pappas G, Cannon S, Guimarães P (2003) A large scale analysis of resistance gene homologues in Arachis. Mol Genet Genom 270:34–45

    Article  CAS  Google Scholar 

  • Bhagwat A, Krishna TG, Bhatia CR (1997) RAPD analysis of induced mutants of groundnut (Arachis hypogaea L.). J Genet 76:201–208

    CAS  Google Scholar 

  • Bock KR, Murant AF, Rajeshawri R (1990) The nature of resistance in groundnut to rosette disease. Ann Appl Biol 117:379–384

    Google Scholar 

  • Bock KR, Nigam SN (1988) Methodology of groundnut rosette screening and vector-ecology studies in Malawi. In: Coordinated Research on Groundnut Rosette Virus Disease, ICRISAT. Patancheru, AP, India, pp 6–10

    Google Scholar 

  • Broun P, Gettner S, Somerville C (1999) Genetic engineering of plant lipids. Annu Rev Nutr 19:197–216

    Article  PubMed  CAS  Google Scholar 

  • Burks AW, Williams LW, Helm RM, Connaughton C, Cockrell G, O’Brien TJ (1991) Identification of a major peanut allergen, Ara h I, in patients with atopicdermatitis19 and positive peanut challenges. J Allergy Clin Immunol 88:172–179

    Article  PubMed  CAS  Google Scholar 

  • Burks AW, Williams LW, Connaughton C, O’Brien TJ, Helm RM (1992) Identification and characterization of a second major peanut allergen Ara h II, with the use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 90:962–969

    Article  PubMed  CAS  Google Scholar 

  • Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA (1995) Recombinant peanut allergen Ara h1 expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 96:1715–1721

    PubMed  CAS  Google Scholar 

  • Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379

    Article  CAS  Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphiploid in cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploidy species. Genetics 159:823–837

    PubMed  CAS  Google Scholar 

  • Burr B, Evola SV, Burr FA, Beckmann JS (1983) Application of restriction fragment length polymorphism to plant breeding. In: Setlow JK, Hollaender A (eds) Genetic Engineering, Vol 5. Plenum, New York, pp 45–49

    Google Scholar 

  • Burr B, Burr FA, Thompson KH, Albertson MC, Stubber CW (1988) Gene mapping with recombinant inbred in maize. Genetics 118:519–526

    PubMed  CAS  Google Scholar 

  • Butler DR, Wadia KD, Jadhav DR (1994) Effect of leaf wetness and temperature on late leaf spot infection of groundnut. Plant Pathol 43:112–120

    Article  Google Scholar 

  • Chandran K, Pandya SM (2000) Morphological characterization of Arachis species of section Arachis. Plant Genet Resource Newslett 121:38–41

    Google Scholar 

  • Chen B-Y, Heneen WK (1989) Resynthesized Brassica napus L: a review of its potential in breeding and genetic analysis. Hereditas 111:255–263

    Google Scholar 

  • Chenault KD, Melouk HA (2003) Resistance to Sclerotinia minor infection in transgenic peanut — a three year study. Proc Am Peanut Res Edu Soc 35. http://www.apres.okstate.edu/old%20proceedings/APRES%202003%20Proceedings%20vol%2035.pdf#search=‘APRES%202003’

    Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2003) Developing peanut expressed sequence tag (EST) libraries. ASGSB 2003 Annual Meeting (Abstr)

    Google Scholar 

  • Choi K, Burow MD, Church G, Burow G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    PubMed  CAS  Google Scholar 

  • Chu FS, Fan TSL, Zhang G-S, Xu Y-C, Faust S, McMahon PL (1987) Improved enzyme-linked immunosorbent assay for aflatoxin B1 in agricultural commodities. J Assoc Off Anal Chem 70:854–857

    PubMed  CAS  Google Scholar 

  • Church GT, Simpson CE, Burow MD, Paterson AH, Starr JM (2000) Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut. Nematology 2:575–580

    Article  CAS  Google Scholar 

  • Clifford BC (1973) The construction and operation of a dew-simulation chamber. New Phytol 77:619–623

    Article  Google Scholar 

  • Cole RJ, Sanders TH, Doener JW, Blankenship PD (1989) Environmental conditions required to induce preharvest aflatoxin contamination of groundnuts: Summary of six years research. In: McDonald D, Mehan VK, Halls SD (eds) Proc Int Workshop on Afaltoxin Contamination of Groundnut. ICRISAT, Patancheru, AP, India, pp 279–287

    Google Scholar 

  • Cole RJ, Dorner JW, Holbrook CC (1995) Advances in mycotoxin elimination and resistance. In: Pattee HE, Stalker HT (eds) Advances in Peanut Science. American Peanut Research and Education Society, Inc., Stillwater, OK 74078, USA, pp 456–474

    Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Micr Interact 11:968–978

    CAS  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ (2001) Resistance gene analogs in barley and their relationship to rust resistance genes. Genome 44:375–381

    Article  PubMed  CAS  Google Scholar 

  • Cook BG, Crosthwaite IC (1994) Utilization of Arachis species as forage. In: Smart J (ed) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, pp 624–663

    Google Scholar 

  • Craufurd PQ, Wheeler TR, Ellis RH, Summerfield RJ, Williams JH (1999) Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Sci 39:136–142

    Article  Google Scholar 

  • Damicone JP, Jackson KE, Dashiell KE, Melouk HA, Holbrook CC (2003) Reaction of the peanut core to sclerotinia blight and pepperspot. http://www.apres.okstate.edu/old%20proceedings/APRES%202003%20Proceedings%20 vol%2035.pdf#search=‘APRES%202003’

    Google Scholar 

  • Daykin ME, Hussey RS (1985) Staining and histopathological techniques in nematolody. In: Barker KR, Carter CC, Sasse JN (eds) An Advanced Treatise on Meloidogyne, Vol. II. Methodology. North Carolina State Univ Graphics, Raleigh, NC, pp 39–48

    Google Scholar 

  • De Jong EC, van Zijverden M, Spanhaak S, Koppelman SJ, Pellegrom H, Penninks AH (1998) Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy 28:743–751

    Article  PubMed  Google Scholar 

  • Delfosse P, Devi PS, Reddy AS, Risopoulos J, Doucet D, Legreve A, Maraite H, Reddy DVR (1996) Epidemiology of the Indian peanut clump virus transmitted by Polymyxa sp. In: Sherwood JL, Rush CM (eds) Proc 3rd Symp Int Working Group on Plant Viruses with Fungal Vectors, Dundee, UK, 1996. Am Soc Sugar Beet Technologists, Denver, CO, pp 141–144

    Google Scholar 

  • Delfosse P, Reddy AS, Legreve A, Devi PS, Devi KT, Maraite H, Reddy DVR (1999) Indian peanut clump virus (IPCV) infection on wheat and barley: symptoms, yield loss and transmission through seed. Plant Pathol 48:273–282

    Article  Google Scholar 

  • Dietzgen RG, Mitter N, Higgins CM, Hall R, Teycheney P-Y, Cruickshank A, Hapsoro D, Sudarsono (2004) Harnessing RNA silencing to protect peanuts from stripe disease. 4th Int Crop Sci Congr 2004. http://www.cropscience.org.au/icsc2004/3/8/324_dietzgenrg.htm.

    Google Scholar 

  • Dodo H, Marsic D, Callender M, Cebert E, Viquez O (2002) Screening 34 peanut introductions for allergen content using ELISA. Food Agric Immunol 14:147–154

    Article  CAS  Google Scholar 

  • Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi SL, Gurtu S (2002) Molecular diversity among accessions possessing varying levels of resistance to early leaf spot in groundnut. Int Arachis Newslett 22:36–37

    Google Scholar 

  • Dwivedi SL, Varma TS (2002) Molecular diversity among groundnut varieties differing in drought tolerance traits. Int Arachis Newslett 22:34–36

    Google Scholar 

  • Dwivedi SL, Reddy DVR, Nigam SN, Rao GVR, Wightman JA, Amin PW, Nagabhushanam GVS, Reddy AS, Scholberg E, Ramraj VM (1993) Registration of ICGV 86031 peanut germplasm. Crop Sci 33:220

    Article  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S, Yuejin W, Nigam SN (2001) Assessment of genetic diversity among selected groundnut germplasm. 1: RAPD analysis. Plant Breed 120:345–349

    Article  CAS  Google Scholar 

  • Dwivedi SL, Pande S, Rao JN, Nigam SN (2002a) Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica 125:81–88

    Article  CAS  Google Scholar 

  • Dwivedi SL, Gurtu S, Nigam SN (2002b) AFLP diversity among selected foliar diseases resistant groundnut (Arachis hypogaea L.) germplasm. Ind J Plant Genet Resource 15:46–50

    Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003a) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: Opportunities and challenges. Adv Agron 80:153–221

    CAS  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S, Upadhyaya HD, Nigam SN (2003b) AFLP diversity among selected rosette resistant groundnut germplasm. Int Arachis Newslett 23:21–23

    Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    PubMed  CAS  Google Scholar 

  • El-Nakib O, Pestka JJ, Chu FS (1981) Determination of aflatoxin B1 in corn, wheat, and peanut butter by enzyme-linked immunosorbent assay and solidphase radioimmunoassay. J Assoc Off Anal Chem 64:1077–1082

    PubMed  CAS  Google Scholar 

  • FAO (2002) http://apps.fao.org/page/collections?subset=agriculture

    Google Scholar 

  • FAO (2003) http://apps.fao.org/page/collections?subset=agriculture

    Google Scholar 

  • Fedorova M, van del Mortel J, Matsumoto PA, Cho J, Twon CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537

    Article  PubMed  CAS  Google Scholar 

  • Ferguson ME, Burow M, Schultze SR, Bramel PJ, Paterson A, Kresovich S, Mitchell S (2004a) Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Ferguson ME, Bramel PJ, Chandra S (2004b) Gene diversity among botanical varieties in peanut (Arachis hypogaea L). Crop Sci 44:1847–1854

    Article  CAS  Google Scholar 

  • Fernandes MIB-de-M, Zanatta ACA, Prestes AM, Caetano V-da-R, Barcellos AL, Angra DC, Pandolfi V (2000) Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance fromrelated species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell). Genet Mol Biol 23:1051–1062

    Article  Google Scholar 

  • Franke MD, Brenneman TB, Holbrook CC (1999) Identification of resistance to Rhizoctonia limb rot in a core collection of peanut germplasm. Plant Dis 83:944–948

    Google Scholar 

  • Freitas FO, Valls JFM (2001) Nota sobre a ocorrência de um tipo distinto de amendoim no Parque Indigena do Xingúe arredores e suas implicações etnobotânicas. In: SIRGEALC Simpósio de Recursos Genéticos para a América Latina e o Caribe 3, Londrina Anais Londrina IAPAR, pp 303–304

    Google Scholar 

  • Freeman HA, Nigam SN, Kelley TG, Ntare BR, Subrahmanyam P, Boughton D (1999) Theworld groundnut economy: facts, trends, and outlook. ICRISAT, Patancheru, AP, India, pp 52

    Google Scholar 

  • Friedt W, Luhs WW (1999) Breeding of rapeseed (Brassica napus) for modified seed quality-synergy of conventional and modern approaches. New Horizons for an Old Crop. Proc 10th Int Rapeseed Congress, Canberra, Australia. http://www.regional.org.au/au/gcirc/4/440.htm

    Google Scholar 

  • Garcia GM, Stalker HT, Kochert G (1995) Introgression analysis of an interspecific hybrid population in peanut (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38:166–176

    PubMed  CAS  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    PubMed  CAS  Google Scholar 

  • Gimenes MA, Loped CR, Vall JFM (2002) Genetic relationships among Arachis species based on AFLP. Genet Mol Biol 25:349–353

    Article  CAS  Google Scholar 

  • Grieshammer U, Wynne JC (1990) Isozyme variability immature seeds of U.S. peanut cultivars and collections. Peanut Sci 17:72–75

    CAS  Google Scholar 

  • Guo BZ, Yu J, Holbrook CC, Lee RD, Lynch RE (2003) Application of differential display RT-PCR and EST/Microarray technologies to the analysis of gene expression in response to drought stress and elimination of aflatoxin contamination in corn and peanut. J Toxicol 22:287–312

    Article  CAS  Google Scholar 

  • Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  Google Scholar 

  • Hanks RJ, Keller J, Rasmussen VP, Wilson GD (1976) Line-source sprinkler for continuous variable irrigation crop production studies. J Am Soil Sci Soc 40:426–429

    Article  Google Scholar 

  • Hayes AJ, Saghai-Maroof MA (2000) Targeted resistance gene mapping in soybean using modified AFLPs. Theor Appl Genet 100:1279–1283

    Article  CAS  Google Scholar 

  • He G, Prakash C (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149

    Article  CAS  Google Scholar 

  • He G, Prakash C (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resource Crop Evol 48:347–352

    Article  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellite as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3. http://www.biomedcentral/com/1471-2229/3/3

    Article  PubMed  Google Scholar 

  • Herman EM (2004) Allergenic responses to legume proteins. In: Wilson RF, Stalker HT, Brummer EC (eds) Legume Crop Genomics. AOCS, Champaign, IL

    Google Scholar 

  • Hernandez G, Ramirez M, Blair MW, Lara M, Blanco L, Muno M, Barazesh S, Verdoom E, Graham M, Vance CP (2004) Comparative analysis of common bean (Phaseolus vulgaris) nodule, root, pod and leaf expressed sequence tag (ESTs) libraries: a platform for “Phaseomics” research. AEP/ICLGG meeting presented paper, Dijon, France

    Google Scholar 

  • Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327

    Article  CAS  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, van de Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet DOI:10.1007/S00122-004-1756-Z

    Google Scholar 

  • Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35:1019–1025

    CAS  Google Scholar 

  • Hird H, Lloyd J, Goodier R, Brown J, Reece P (2003) Detection of peanut using real-time polymerase chain reaction. Eur Food Res Technol 217:265–268

    Article  CAS  Google Scholar 

  • Holbrook CC (2001) Status of the Arachis germplasmcollection in the United States. Peanut Sci 28:84–89

    Google Scholar 

  • Holbrook CC, Dong WB (2003) Selection of a core of the core collection for peanut. http://www.apres.okstate.edu/old%20proceedings/APRES%202003%20Proceedings%20vol%2035.pdf#search=‘APRES%202003’

    Google Scholar 

  • Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Holbrook CC, Knauft DA, Dickson DW(1983) A technique for screening peanut for resistance to Melodoigyne arenaria. Plant Dis 67:957–958

    Google Scholar 

  • Holbrook CC, Anderson WF, Pitmann RN (1993) Selection of core collection from US germplasm collection of peanut. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Wilson DM, Matheron ME (1998) Sources of resistance to pre-harvest aflatoxin contamination in peanut. Proc Am Peanut Res Edu Soc 30:54 (Abstr)

    Google Scholar 

  • Holbrook CC, Stephenson MG, Johnson AW (2000) Level and geographical distribution of resistance to Meloidogyne arenaria in the U.S. peanut germplasm collection. Crop Sci 40:1168–1171

    Article  Google Scholar 

  • Holzhauser T, Vieths S (1999) Indirect competitive ELISA for determination of traces of peanut (Arachis hypogaea L.) proteins in complex food matrices. J Agric Food Chem 47:603–611

    Article  PubMed  CAS  Google Scholar 

  • Hopkins MS, Cassa AM, Wang T, Michell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Hovis AR, Young CT, Kuhn CW (1979) Effect of two strains of peanut mottle virus on fatty acids, amino acids, and protein of six peanut lines. Peanut Sci 6:88–92

    Article  CAS  Google Scholar 

  • Huaracha E, Xu M, Korban SS (2004) Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs. Theor Appl Genet 108:274–279

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS, Barker KR (1973) A comparison of methods of collection inocula for Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  • IBPGR, ICRISAT (1992) Descriptors for groundnut (Arachis hypogaeaL.). IBPGR Rome. ICRISAT, Patancheru, AP, India

    Google Scholar 

  • ICRISAT (2004) Harnessing Biotechnology for the Poor. Archival Report 2003. ICRISAT, Patancheru, AP, India, p 124

    Google Scholar 

  • Isleib TG, Beute MK, Rice PW, Hollowell JE (1995) Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Edu Soc 27:25 (abstr)

    Google Scholar 

  • Isleib TG, Holbrook CC, Gorbet DW (2001) Use of plant introductions in peanut cultivar development. Peanut Sci 28:96–113

    Google Scholar 

  • Jain AK, Basha SM, Holbrook CC (2001) Identification of drought-responsive transcripts in peanut (Arachis hypogaea L). Electronic J Biotechnol 4(2). (http://www.ejbiotechnology.info/content/vol4/issue2/full/2/reprint.html)

    Google Scholar 

  • Jambunathan R, Raju MS, Bedre SP (1985) Analysis of oil content of groundnuts by nuclear magnetic resonance spectrometry. J Sci Food Agri 36:162–166

    Article  Google Scholar 

  • Jayalakshmi V, Rajareddy C, Reddy PV, Nageswara Rao RC (1999) Genetic analysis of carbon isotope discrimination and specific leaf area in groundnut (Arachis hypogaea L). J Oilseeds Res 16:1–5

    Google Scholar 

  • Journet EP, Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592

    Article  PubMed  Google Scholar 

  • Jung S, Swift D, Senfoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000a) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263:796–805

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Powell G, Moore K, Abbott A (2000b) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Keating MU, Jones RT, Worley NJ, Shively CA, Yunginger JW (1990) Immunoassay of peanut allergens in food-processing materials and finished foods. J Allergy Clin Immunol 86:41–44

    Article  PubMed  CAS  Google Scholar 

  • Kerridge PC, Hardy B (eds) (1994) Biology and agronomy of forage Arachis. CIAT, Cali, Colombia. CIAT Publication No. 240

    Google Scholar 

  • Kinney AJ, Knowlton S (1998) Designer oils: the high oleic acid soybean. In: Roller S, Harlander S (eds) Genetic Modification in Food Industry. Blackie, London, pp 193–213

    Google Scholar 

  • Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker W-M (1999) Selective cloningof peanut allergens, including profiling and 2S albumins, by phage display technology. Allergy Immunol 119:265–274

    Article  CAS  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  Google Scholar 

  • Konan KN, Viquez OM, Dodo HW (2002) Knocking down the major peanut allergen Ara h2 in transgenic peanut plants. American Peanut Research Education Society (APRES) S93:19

    Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant eco-type specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Koppelman SJ, Vlooswijk, Knippels LMJ, Hessing M, Knol EF, van Reijsen FC, Bruijnzeel-Koomen CAFM (2001) Quantification of major peanut allergens Ara h1 and Ara h2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 56:132–137

    Article  PubMed  CAS  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Krishna GK, Zhang J, Yingzhi L, He G, Pittman RN, Burow MD, Delikostadinov SG, Puppala N (2003) Detection of genetic diversity in Valencia peanuts using microsatellite markers. http://www.apres.okstate.edu/old%20proceedings/APRES%202003%20Proceedings%20vol%2035.pdf#search=‘APRES%202003’

    Google Scholar 

  • Kuck JA, St Angelo AJ (1980) Improved method for quantitative determination of oil content in peanuts and peanut products. J Am Oilseeds Chem Soc 57:128–129

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP genetic linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Livingstone JL, Hampton JL, Stiles AR, Phipps PM, Grabau DM (2003) Genetic transformation of peanut for resistance to Sclerotinia minor. http://www.apres.okstate.edu/old%20proceedings/APRES%202003%20Proceedings%20 vol%2035.pdf#search=‘APRES%202003’

    Google Scholar 

  • Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138

    Article  CAS  Google Scholar 

  • Lu CM, Zhang B, Kakihara F, Kato M (2001) Introgression of genes into cultivated Brassica napus through resynthesis of B. napus via ovule culture and the accompanying change in fatty acid composition. Plant Breed 120:405–410

    Article  CAS  Google Scholar 

  • Luo M, Dang P, Guo BZ, Holbrook CC (2003) Functional genomics of Arachis hypogaea L. for understanding host peanut and Aspergillus interactions (Abstr). In: Proc 3rd Fungal Genomics, 4th Fumonisin, and 16th Aflatoxin Elimination Workshops, 13–15 October 2003, Savannah, GA, p 56

    Google Scholar 

  • Lynch RE, Mack TP (1995) Biological and biotechnical advances for insect management in peanut. In: Pattee HE, Pattee HT (eds) Advances in Peanut Science. American Peanut Research and Education Society, Inc., Stillwater, OK 74078, pp 95–159

    Google Scholar 

  • Mehan VK (1989) Screening groundnuts for resistance to seed invasion by Aspergillus flavus and to aflatoxin production. In: McDonald D, Mehan VK, Halls SD (eds) Proc Int Workshop on Afaltoxin Contamination of Groundnut. ICRISAT, Patancheru, AP, India, pp 323–334

    Google Scholar 

  • Mehan VK, McDonald M (1980) Screening for resistance to Aspergillus flavus invasion and aflatoxin production in groundnuts. ICRISAT Groundnut Improvement Program Occasional paper no. 2. ICRISAT, Patancheru, AP, India, pp 15 (limited distribution)

    Google Scholar 

  • Mehan VK, McDonald M, Ramakrishan N(1985) Varietal resistance in peanut to aflatoxin production. Peanut Sci 13:7–10

    Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403

    PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    PubMed  CAS  Google Scholar 

  • Minja EM, van der Merwa PJA, Kimmins FM, Subrahmanyam P (1999) Screening of groundnut lines for resistance to aphids, Aphis craccivora Koch. Int Arachis Newslett 19:21–23

    Google Scholar 

  • Misra JB, Mathur RS, Bhatt DM(2000) Near-infrared transmittance spectroscopy: a potential tool for non-destructive determination of oil content in groundnuts. J Sci Food Agric 80:237–240

    Article  CAS  Google Scholar 

  • Mixon AC (1986) Reducing Aspergillus species infection of peanut seed using resistant genotypes. J Environ Qual 15:101–103

    Article  Google Scholar 

  • Mixon AC, Rogers KM (1973) Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J 65:560–562

    Article  Google Scholar 

  • Moretzsohn M de C, Hopkins MS, Mitchell SE, Kresovich S, Valla JFM, Ferreira M (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMCPlant Biol 4:11. http://www.biomedcentral.com/1471-2229/4/11

    Google Scholar 

  • Mozingo RW, Coffelt TA, Wynne JC (1988) Quality evaluation of Virginia-type peanut varieties released from 1944–1985. South Coop Series Bull. 335:1–18

    Google Scholar 

  • Muehlbauer GJ, Specht JE, Thomas-Compton MA, Staswick PE, Bernard RL (1988) Near-isogenic lines — a potential resource in the integration of conventional and molecular marker linkage maps. Crop Sci 28:729–735

    Article  Google Scholar 

  • Murant AF, Kumar IK (1990) Different variants of the satellite RNA of groundnut rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease. Ann Appl Biol 117:85–92

    CAS  Google Scholar 

  • Murant AF, Rajeshwari R, Robinson DJ, Raschke JH (1988) A satelliteRNA of groundnut rosette virus that is largely responsible for symptoms of groundnut rosette disease. J Gen Virol 69:1479–1486

    CAS  Google Scholar 

  • Nageswara Rao RC, Wright GC (1994) Stability of relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103

    Article  Google Scholar 

  • Nageswara Rao RC, Nigam SN (2001) Genetic options for drought management in groundnut. In: Saxena NP (ed) Management of Agricultural Drought: Agronomic and Genetic Options. Oxford and IBH, New Delhi, pp 123–141

    Google Scholar 

  • Nageswara Rao RC, Williams JH, Singh M (1989) Genotypic sensitivity to drought and yield potential of peanut. Agron J 81:887–893

    Article  Google Scholar 

  • Nageswara Rao RC, Williams JH, Wadia KDR, Hubick KT, Farquhar GD (1993) Crop growth, water-use efficiency, and carbon isotope discrimination in groundnut Arachis hypogaea L.) genotypes under end-of-season drought conditions. Ann Appl Biol 122:357–367

    Google Scholar 

  • Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J Agron Crop Sci 186:175–182

    Article  Google Scholar 

  • Naidu RA, Robinson DJ, Kimmins FM (1998) Detection of each of the causal agents of groundnut rosette disease in plants and vector aphids by RT-PCR. J Virol Methods 76:9–18

    Article  PubMed  CAS  Google Scholar 

  • Negi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat color in Brassica juncea and conversion to SCAR marker for rapid selection. Theor Appl Genet 101:146–152

    Article  CAS  Google Scholar 

  • Nelson SC, Simpson CE, Starr JL (1989) Resistance to Meloidogyne arenaria in Arachis spp. germplasm. J Nematol (suppl) 21(4S):654–660

    CAS  Google Scholar 

  • Nevil DJ (1981) Components of resistance to Cercospora arachidicola and Cercosporodium personatum in groundnut. Ann Appl Biol 99:77–86

    Google Scholar 

  • Nigam SN, Bock KR (1990) Inheritance of resistance to groundnut rosette virus in groundnut (Arachis hypogaea L.). Ann Appl Biol 117:553–560

    Google Scholar 

  • Nigam SN, Upadhyaya HD, Chandra S, Nageswara Rao RC, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea L.). Ann Appl Biol 139:301–306

    Article  Google Scholar 

  • Nigam SN, Chandra S, Manhoar B, Talwar HS, Reddy AGS, Kanchi R (2003a) Evaluation of trait-based and empirical selections for drought resistance at ICRISAT Center, Patancheru, AP, Inida. In: Cruickshank AW, Rachupati NC, Wright GC, Nigam SN (eds) Breeding for Drought Resistant Peanuts. Proc Collaborative Review Meeting held on 25–27 Feb 2002, Hyderabdad, AP, India; ICRISAT, Queensland Department of Primary Industries (QDPI), and Indian Council of Agriculatural Research (ICAR), New Delhi, pp 43–51

    Google Scholar 

  • Nigam SN, Nageswara Rao RC, Wright GC (2003b) Breeding for increased water-use Efficiency in groundnut. pp 305–318. In: Rai M, Singh H, Hegde DM (eds) National Seminar on Stress Management in Oilseeds for Attaining Self-Reliance in Vegetable Oils: Thematic papers. Indian Society of Oilseeds Research, Directorate of Oilseed Research, Rajendranagar, Hyderabad, AP, India

    Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14:7–11

    CAS  Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1991) Disease reaction and yield performance of peanut genotypes grown under groundnut rosette and rosette-free field environments. Plant Dis 75:1269–1273

    Article  Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW (1992) Inheritance of resistance in peanut to mixed infection of groundnut rosette virus (GRV) and groundnut rosette assistor virus and a single infection of GRV. Plant Dis 76:95–100

    Article  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Yang H, Perry E, Akasaka Y, Niu C, Holbrook C, Lynch RE (2002) Transegnic peanut for preharvest aflatoxin reduction. Proc 1st Fungal Genomics, 2nd Fumonisin Elimination, and 14th Aflatoxin Elimination Workshops, p 141

    Google Scholar 

  • Padagham DE, Kimmins FM, Rao GVR (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch). Ann Appl Biol 117:285–294

    Google Scholar 

  • Panford JA (1990) Determination of oil content of seeds by NIR: influence of fatty acid composition on wavelength selection. J Am Oil Chem Soc 67:1627–1634

    Article  Google Scholar 

  • Paran I, Michelmore RW(1993) Development of a reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincon SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphism. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Stalker HT, Gallo-Meagher M, Burow MD, Dwivedi SL, Crouch JH, Mace ES (2004) Genomics and genetic enhancement of peanut. In: Wilson RF, Stalker HT, Brummer EC (eds) Legume Crop Genomics. AOCS, Champaign, IL, pp 97–109

    Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1250–1571

    Article  Google Scholar 

  • Pomes A, Helm RM, Bannon GA, Burks AW, Tsay A, Chapman MD (2003) Monitoring peanut allergen in food products by measuring Ara h1. J Allergy Clin Immunol 111:640–645

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV (1996) Generating and using DNA markers in plants. In: Birren B, Lai E (eds) Analysis of Non-mammalian Genomes — A Practical Guide. Academic, New York, pp 75–134

    Google Scholar 

  • Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772

    Article  PubMed  CAS  Google Scholar 

  • Rajeshwari R, Murant AF, Massalski PR (1987) Use of monoclonal antibody to potato leaf roll virus for detecting groundnut rosette assistor virus and virus diseases: distribution, identification and control. Ann Appl Biol 111:353–358

    Google Scholar 

  • Rajgopal K, Chandran K, Bhagat NR, Bhalodia PK (1997) Morphological characterization of Valencia and Virginia bunch peanut (Arachis hypogaea L.) germplasm. Plant Genet Resource Newslett 109:27–29

    Google Scholar 

  • Ram BP, Hart LP, Cole RJ, Pestka JJ (1986a) Application of ELISA to a retail survey of aflatoxin B1 in peanut butter. J Food Prot 49:792–795

    CAS  Google Scholar 

  • Ram BP, Hart LP, Shotwell O, Pestka JJ (1986b) Enzyme-linked immunosorbent assay of aflatoxin B1 in naturally contaminated corn and cotton seed. J Assoc Off Anal Chem 69:904–907

    PubMed  CAS  Google Scholar 

  • Rao MJV, Upadhyaya HD, Mehan VK, Nigam SN, McDonald D, Reddy NS (1995) Registration of peanut germplasm ICGV 88145 and ICGV 89104 resistant to seed infection by Aspergillus flavus. Crop Sci 35:1717

    Article  Google Scholar 

  • Rao GVR, Wightman JA (1999) Status of the integrated management of groundnut pests in India. In: Upadhyaya RK, Mukerji KG, Rajak RL (eds) IPM System in Agriculture 5. Aditya, New Delhi, pp 435–459

    Google Scholar 

  • Rao RDVJP, Reddy DVR, Nigam SN, Reddy AS, Waliyar F, Reddy TY, Subramanyam K, Sudheer MJ, Naik KSS, Bandhyopdahyay A, Desai S, Ghewande MP, Basu MS, Somasekhar (2003a) Peanut stem necrosis: a new disease of groundnut in India. Information Bull. No. 67. ICRISAT, Patancheru, AP, India, p 12

    Google Scholar 

  • Rao NK, Reddy LJ, Bramel PJ (2003b) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resource Crop Evol 50:707–721

    Article  Google Scholar 

  • Ratna AS, Rao AS, Nolt BL, Reddy DVR, Vijayalakshmi, McDonald D (1991) Studies on the transmission of Indian peanut clump virus disease by Polymyxa graminis. Ann Appl Biol 118:71–78

    Google Scholar 

  • Reddy DVR, Rajeshwari R, Izuka N, Lesemann DE, Norlt BL, Goto T (1983) The occurrence of Indian peanut clump, a soil-borne virus disease of groundnut (Arachis hypogaea L.) in India. Ann Appl Genet 102:305–310

    Google Scholar 

  • Savage GP, Keenen JL (1994) The composition and nutritive value of groundnut kernels. In: Smart J (ed) The Groundnut Crop: A Scientific Basis of Improvement. Chapman and Hall, London, pp 173–213

    Google Scholar 

  • Seib JC, Wunder L, Gallo-Meagher M, Carpentieri-Pipolo V, Gorbet DW, Dickson DW (2003) Marker-assisted selection in screening peanut for resistance to root-knot nematode. APRES 35:90 (abstr)

    Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5s and 18s–25s rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    CAS  Google Scholar 

  • Seetharama N, Dwivedi SL, Saxena NP (2003) Enhancing productivity of rainfed oilseed crops in India by mitigating effects of drought. In: Rai M, Singh H, Hegde DM (eds) National Seminar on Stress Management in Oilseeds for Attaining Self-Reliance in Vegetable Oils: Thematic papers. Indian Soc Oilseeds Res, Directorate of Oilseed Research, Rajendranagar, Hyderabad, AP, India, pp 305–318

    Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium temefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Pampapathy G, Kumar R (2002) Technique to screen peanut for resistance to the tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae) under nochoice cage conditions. Peanut Sci 29:35–40

    Google Scholar 

  • Sharma HC, Pampapathy G, Dwivedi SL, Reddy LJ (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96:1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant-Micr Interact 11:815–823

    CAS  Google Scholar 

  • Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop EG, Vielweber CJ, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002) A compilation of soybean ESTs: generation and analysis. Genome 45:329–338

    Article  PubMed  Google Scholar 

  • Sicherer SH, Munoz-Furlong A, Burk AW, Sampson HA (1999) Prevalence of peanut and tree nut allergy in the US determined by a random digit dialtelephone survey. J Allergy Clin Immunol 103:559–562

    Article  PubMed  CAS  Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116

    CAS  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ Peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Simpson CE, Nelson SC, Starr JL, Woodard KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm lines. Crop Sci 33:1418

    Article  Google Scholar 

  • Simpson CE, Krapovikas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80

    Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘NemaTAM’ Peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystemics and genetic resources. In: Smartt J (ed) The Groundnut Crop: A Scientific Basis for Improvement. Chapmanand Hall, London, pp 96–137

    Google Scholar 

  • Singh AK, Nigam SN (1997) Groundnut. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in Trust. Cambridge University Press, Cambridge, pp 114–127

    Google Scholar 

  • Singh U, Jambunathan R (1980) Evaluation of rapid methods for the estimation of protein in chickpea (Cicer arietinum L.). J Sci Food Agri 31:247–254

    Article  CAS  Google Scholar 

  • Singh AK, Subrahmanyam P, Gurtu S (1996) Variation in wild groundnut species, Arachis duranensis Krapov.& W.C. Gregory. Genet Resour Crop Evol 43:135–142

    Article  Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial wilt diseases: an update and appraisal. Information Bulletin No. 50, ICRISAT, Patancheru, AP, India, p 48

    Google Scholar 

  • Smartt J (1978) Makulu Red — A ‘green revolution’ groundnut variety? Euphytica 27:605–608

    Article  Google Scholar 

  • Specht JE, Williams JH, Weidenbenner CJ (1986) Differential response of soybean genotypes subjected to a seasonal soil water gradient. Crop Sci 26:922–934

    Article  Google Scholar 

  • St Angelo AJ, Ory RL (1973) Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Edu Assoc 5:128–133

    CAS  Google Scholar 

  • Staden R, Judge DP, Bonfield JK (2003a) Analysing sequences using the Staden package and EMBOSS. In: Stephen AK, Womble DD (eds) Introduction to Bioinformatics. A Theoretical and Practical Approach. Human Press, Totowa, NJ

    Google Scholar 

  • Staden R, Judge DP, Bonfield JK (2003b) Managing sequencing projects in the GAP4 environment. In: Stephen AK, Womble DD (eds) Introduction to Bioinformatics. A Theoretical and Practical Approach. Human Press, Totowa, NJ

    Google Scholar 

  • Stalker HT, Lynch RE (2002) Registration of four insectresistant peanut germplasm lines. Crop Sci 42:312–313

    Article  PubMed  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123

    CAS  Google Scholar 

  • Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE, Stalker HT (eds) Advances in Peanut Science. APRES, Stillwater, OK, pp 14–53

    Google Scholar 

  • Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, MC West, Bannon II (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of themajor peanut allergen Ara h2. Arch Biochem Biophys 342:244–253

    Article  PubMed  CAS  Google Scholar 

  • Starr JL, Simpson CE, Lee Jr TA (1995) Resistance to Meloidogyne tarenaria in advanced generation breeding lines of peanut. Peanut Sci 22:59–61

    Google Scholar 

  • Subrahmanyam P, McDonald D, Waliar F, Reddy LJ, Nigam SN, Gibbons RW, Rao VR, Singh AK, Pande S, Reddy PM, Rao PVS (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information Bulletin no 47, ICRISAT, Pattancheru, AP, India, p 20

    Google Scholar 

  • Subrahmanyam P, Hildebran GL, Naidu RA, Reddy LJ, Singh AK (1998) Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann Appl Biol 132:473–485

    Article  Google Scholar 

  • Subrahmanyam P, Naidu RA, Reddy LJ, Kumar PL, Ferguson ME (2001) Resistance to groundnut rosette disease in wild Arachis species. Ann Appl Biol 139:45–50

    Article  Google Scholar 

  • Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphismin cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  PubMed  CAS  Google Scholar 

  • Taneja SL, Leuschner K (1985) Methods of rearing, infestation, and evaluation for Chilo partellus resistance in sorghum. In: Proc Int Sorghum Entomol Workshop, 15–21 July 1984, Texas A&M University, College Station, TX. ICRISAT, Patancheru, AP, India, pp 178–185

    Google Scholar 

  • Tanhuanpaa P, Vilkki J (1999) Marker-assisted selection for oleic acid content in spring turnip rape. Plant Breed 118:568–570

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JS (1996) Advance backcross QTL analysis: a method for simultaneous discovery and transfer of valuable QTL from unadapted germplasm to elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264

    Article  CAS  Google Scholar 

  • Taylor AL, Sasser JN (1978) Biology, identification and control of root-knot nematodes (Meloidogyne species). North Carolina State University Graphics, Raleigh, NC, p 111

    Google Scholar 

  • Thakur RP, Rao VP, Reddy SV, Ferguson M (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and aflatoxin production by Aspergillus flavus. Int Arachis Newslett 20:44–46

    Google Scholar 

  • Tian A-G, Wang J, Cui P, Han Y-J, Xu H, Cong L-J, Huang XG, Wang X-L, Ziao Y-Z, Wang B-J, Wang Y-J, Zhang JS, Chen S-Y (2004) Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet 108:903–913

    Article  PubMed  Google Scholar 

  • Timper P, Holbrook CC, Xue HQ (2000) Expression of nematode resistance in plant introductions of Arachis hypogaea. Peanut Sci 27:78–82

    Google Scholar 

  • Torrance L, Mayo MA (1997) Proposed reclassification of furoviruses. Archives Virol 142:435–439

    CAS  Google Scholar 

  • United Nations University (1980) Analytical methods for the determination of nitrogen and amino acids in foods. In: Pallett PL, Young VR (eds) Nutritional Evaluation of Protein Foods. A report of a working group sponsored by the International Union of Nutritional Sciences and the United Nations University World Hunger Programme. United Nations University, Japan

    Google Scholar 

  • Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A minicore subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Ferguson ME, Bramel PJ (2001a) Status of Arachis germplasm collection at ICRISAT. Peanut Sci 28:89–96

    Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2001b) Development of Asia region groundnut core collection. Paper presented in the Diamond Jubilee Symposium on Hundred Years of Post-Mendelian Genetics: Retrospect and Prospects. 6–9 Nov 2001. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Upadhyaya HD, Nigam SN, Mehan VK, Reddy AGS, Yellaiah N (2001c) Registration of Aspergillus flavus seed infection resistant peanut germplasm ICGV 91278, ICGV 91283, and ICGV 91284. Crop Sci 41:599–600

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002a) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD, Nigam SN, Reddy AGS, Yellaiah N (2002b) Registration of early maturing, rust, late leaf spot, and low temperature tolerant peanut germplasm line ICGV 92267. Crop Sci 42:2220–2221

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resource Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Mallikarjuna Swamy BP, Goudar PVK, Kullaiswamy BY, Singh S (2005) Identification of diverse accessions of groundnut through multienvironment evaluation of core collection for Asia. Field Crops Res 93:293–299

    Article  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006) Identification of diverse groundnut germplasm: sources of earlymaturity in a core collection. Field Crop Res 97:261–267

    Article  Google Scholar 

  • USDA-ARS (2002) Germplasm Resources Information Network — (GRIN). (Online database) National Germplasm Resource Laboratory, Beltsville, MD. (http://www.ars-grin.gov/cgibin/npgs/html/site_holding.pl?S9)

    Google Scholar 

  • Utomo SD, Anderson WF, Wynne JC, Beute MK, Hagler WM Jr, Payne GA (1990) Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc Am Peanut Res Edu Soc 22:26 (abstract)

    Google Scholar 

  • Valls JFM, Simpson CE (1994) Taxonomy, natural distribution, and attributes of Arachis. In:Kerridge PC, Hardy B (eds) Biology and Agronomy of Forage Arachis. Cali, CIAT, pp 1–18

    Google Scholar 

  • Vogt W (1984) An evaluation of immunological methods based on the requirements of the clinical chemist. J Clin Chem Clin Biochem 22:927–934

    PubMed  CAS  Google Scholar 

  • Waliyar F, McDonald D, Rao PVS, Reddy PM (1993) Components of resistance to an Indian source of Cercospora arachidicola in selected peanut lines. Peanut Sci 20:93–96

    Article  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA) (dG-dT)n polymorphism. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Wicking C, Williamson B (1991) From linked marker to gene. Trends Genet 7:288–293

    PubMed  CAS  Google Scholar 

  • Wightman JA, Rao GVR (1994) Groundnut pests. In: Smartt J (ed) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, pp 395–479

    Google Scholar 

  • Wright GC, Nageswara Rao RC, Farquhar GD (1994) Wateruse efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  • Wright GC, Nageswara Rao RC, Basu MS (1996) A physiological approach to the understanding of genotype by environment interactions — a case study on improvement of adaptation in groundnut. In: Cooper M, Hammer GL (eds) Plant Adaptation and Crop Improvement. CABI, Wallingford, UK, pp 247–267

    Google Scholar 

  • Yang H, Ozias-Akins P, Gulbreath AK, Gorbet DW, Weeks JR, Mandal B, Pappu HR (2004) Field evaluation of tomato spotted wilt virus resistance in transgenic peanut (Arachis hypogaea). Plant Dis 88:259–264

    Google Scholar 

  • Yanhao S, Caibin W (1990) Factors contributing to high yields of groundnut in Shandong, China. Int Arachis Newslett 8:7–9

    Google Scholar 

  • Young ND, Mudge J, Ellis TH (2003) Legume genomes: more than peas in a pod. Curr Opin Plant Biol 6:199–204

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Bhatnagar D, Cleveland TE, Nierman WC (2002) Aspergillus flavus EST technology and its applications for eliminating aflatoxin contamination. Mycopathologia 155:6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dwivedi, S.L. et al. (2007). Peanut. In: Kole, C. (eds) Oilseeds. Genome Mapping and Molecular Breeding in Plants, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34388-2_3

Download citation

Publish with us

Policies and ethics