Skip to main content

Mechanisms Regulating Lineage Diversity During Mammalian Cerebral Cortical Neurogenesis and Gliogenesis

  • Chapter
Book cover Cortical Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 39))

Summary

During mammalian cerebral cortical development, neural stem cells (NSCs) present within periventricular generative zones give rise to successive waves of neurons and radial glia, followed by oligodendrocytes and astrocytes. The molecular and cellular mechanisms that orchestrate these precisely timed and progressive maturational events are still largely undefined. These developmental processes are likely to involve the dynamic interplay of environmental signals, cell-cell interactions and transcriptional regulatory events. The bone morphogenetic proteins (BMPs), an expanding subclass of the transforming growth factor β cytokine superfamily, may represent an important set of environmental cues for these progressive maturational events because of the broad profiles of developmental expression of the requisite BMP ligands, receptor subunits and intracellular transduction elements, and because of their versatile roles in promoting a spectrum of cellular processes intimately involved in progressive neural fate decisions. The BMPs also interact with complementary regional environmental signals such as the basic fibroblast growth factor (bFGF) and sonic hedgehog (Shh) that promote earlier stages of NSC expansion, self-renewal, lineage restriction and incipient lineage commitment. The ability of these cytokines and trophic signals to act within specific neurodevelopmental contexts may, in turn, depend on the composite actions of cell-cell contact-associated signals, such as Notch-Hes-mediated lateral inhibitory pathways, and additional transcriptional modulatory events, such as those mediated by members of the inhibitor of differentiation (ID) gene family that encode a novel set of negative basic helix-loop-helix (bHLH) transcription factors. In this chapter, we will examine the distinct roles of these different classes of developmental cues in defining the biological properties of an integrated cerebral cortical developmental signaling network. Ongoing studies in this exciting area of mammalian central nervous system (CNS) development will help to identify important molecular and cellular targets for evolving pharmacological, gene and stem cell therapeutic interventions to combat the pathological sequelae of a spectrum of acquired and genetic disorders of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed S, Reynolds BA, Weiss S (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15:5765–5778

    PubMed  CAS  Google Scholar 

  • Andres-Barquin P, Hernandez MC, Israel MA (1998) Injury selectively down-regulates the gene encoding for the Id4 transcription factor in primary cultures of forebrain astrocytes. NeuroReport 9:4075–4080

    Article  PubMed  CAS  Google Scholar 

  • Andres-Barquin PJ, Hernandez MC, Israel MA (1999) Id4 Expression induces apoptosis in astrocytic cultures and is down-regulated by activation of the cAMP-dependent signal transduction pathway. Exp Cell Res 247:347–355

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Bessho Y, Hojo M, Kageyama R (2000) The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development 127:2933–2943

    PubMed  CAS  Google Scholar 

  • Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies 01, 04 and R mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24:248–257

    Article  Google Scholar 

  • Bongarzone ER, Byravan S, Givogri MI, Schonmann V, Campagnoni AT (2000) Platelet-derived growth factor and basic fibroblast growth factor regulate cell proliferation and the expression of notch-1 receptor in a new oligodendrocyte cell line. J Neurosci Res 62:319–328

    Article  PubMed  CAS  Google Scholar 

  • Bounpheng MA, Dimas JJ, Dodds SG, Christy BA (1999) Degradation of Id proteins by the ubiquitin-proteasome pathway. FASEB J 13:2257–2264

    PubMed  CAS  Google Scholar 

  • Bounpheng MA, Melnikova IN, Dimas JJ, Cristy BA (1999) Identification of a novel transcriptional activity of mammalian Id proteins. Nucleic Acids Res 27:1740–1746

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Ericson J (1999) The specification of neuronal identity by graded sonic hedgehog signalling. Cell Dev Biol 10:353–362

    Article  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  PubMed  CAS  Google Scholar 

  • Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19:251–267

    Article  PubMed  CAS  Google Scholar 

  • Cameron RS, Rakic P (1991) Glial cell lineage in the cerebral cortex: a review and synthesis. GLIA 4:124–137

    Article  PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H (1992) Localization of mu class glutathione-S-transferase in the forebrains of neonatal and young rats: implications for astrocyte development. J Comp Neurol 321:33–39

    Article  PubMed  CAS  Google Scholar 

  • Canoll PD, Musacchio JM, Hardy R, Reynolds R, Marchionni MA, Salzer JL (1996) GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17:229–243

    Article  PubMed  CAS  Google Scholar 

  • Canoll PD, Kraemer R, Teng KK, Marchionni MA, Salzer JL (1999) GGF/neuregulin induces a phenotypic reversion of oligodendrocytes. Mol Cell Neurosci 13:79–94

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS Jr, Takahashi T (1995) Proliferative events in the cerebral ventricular zone. Brain Dev 17:159–163

    Article  PubMed  Google Scholar 

  • Chan SO, Peng D, Chiu FC (1997) Heterogeneous expression of neurofilament proteins in forebrain and cerebellum during development: clinical implications for spinocerebellar ataxia. Brain Res 775:107–118

    Article  PubMed  CAS  Google Scholar 

  • Chanas-Sacre G, Rogister B, Moonen G, Leprince P (2000) Radial glia phenotype: origin, regulation, and transdifferentiation. J Neurosci Res 61:357–363

    Article  PubMed  CAS  Google Scholar 

  • Chiaramello A, Neuman T, Peavy DR, Zuber MX (1996) The GAP-43 gene is a direct downstream target of the basic helix-loop-helix transcription factors. J Biol Chem 271:22035–22043

    Article  PubMed  CAS  Google Scholar 

  • Chiu FC, Feng L, Chan SO, Padin C, Federoff HJ (1995) Expression of neurofilament proteins during retinoic acid-induced differentiation of P19 embryonal carcinoma cells. Mol Brain Res 30:77–86

    Article  PubMed  CAS  Google Scholar 

  • Ciccolini F, Svendsen CN (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci 18:7869–7880

    PubMed  CAS  Google Scholar 

  • Cooper CL, Newburger PE (1998) Differential expression of Id genes in multipotent myeloid progenitor cells: Id-1 is induced by early- and late-acting cytokines while Id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation. J Cell Biochem 71:277–285

    Article  PubMed  CAS  Google Scholar 

  • Culican SM, Baumrind NK, Yamamoto M, Pearlman AL (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10:684–692

    PubMed  CAS  Google Scholar 

  • Deed RW, Jasiok M, Norton JD (1998) Lymphoid-specific expression of the Id3 gene in hematopoietic cells. J Biol Chem 273:8278–8286

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Fukami SI, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui C (1999) Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Glil. Curr Biol 9:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, Tickle C (2000) A model for anteroposterior patterning of the vertebrate limb based on sequential long-and short-range Shh signalling and Bmp signalling. Development 127:1337–1348

    PubMed  CAS  Google Scholar 

  • Ebendal T, Bengtsson H, Soderstrom S (1998) Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 51:139–146

    Article  PubMed  CAS  Google Scholar 

  • Edwards MA, Yamamoto M, Caviness VS (1990) Organization of radial glia and related cells in the developing murine CNS, an analysis based upon a new monoclonal antibody marker. Neuroscience 36:121–144

    Article  PubMed  CAS  Google Scholar 

  • Espinosa A, Zhang M, DeVellis J (1993) O-2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc Natl Acad Sci USA 90:50–54

    Article  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Heintz N (1995) Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development 121:1719–1730

    PubMed  CAS  Google Scholar 

  • Ferrer I, Alcantara S, Ballabriga J, Olive M, Blanco M, Carulla R, Rivera R, Carmona M, Berruezo M, Pitrach S, Planas A (1996) Transforming growth factor α and epidermal growth factor-receptor immunoreactivity in normal and pathological brain. Prog Neurobiol 49:99–123

    Article  PubMed  CAS  Google Scholar 

  • Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA (1998) Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol 18:5435–5444

    PubMed  CAS  Google Scholar 

  • Franklin RGM, Blakemore WF (1995) Glial-cell transplantation and plasticity in the O-2A lineage — implication for CNS repair. Trends Neurosci 18:151–156

    Article  PubMed  CAS  Google Scholar 

  • Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212

    PubMed  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192

    Article  PubMed  CAS  Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by notch 1 signaling in the murine forebrain. Neuron 26:395–404

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Distinct role for bFGF and NT3 in the regulation of cortical neurogenesis. Neuron 15:249–252

    Article  Google Scholar 

  • Gokhan S, Yung SY, Kessler JA, Mehler MF (2000) Cerebral cortical neurogenesis and gliogenesis require transcriptional activation of inhibitor of differentiation (ID) 2 and 4 in neural stem cells by bone morphogenetic proteins. Ann Neurol 48:415–416

    Google Scholar 

  • Goldman JE, Zerlin M, Newman S, Zhang L, Gensert J (1997) Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 19:42–48

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Koentges G, Lumsden A (1996) Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol Cell Neurosci 8:76–83

    Article  CAS  Google Scholar 

  • Gray GE, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development 114:271–283

    PubMed  CAS  Google Scholar 

  • Grinspan JB, Reeves MF, Coulaloglou MJ, Nathanson D, Pleasure D (1996) Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival. J Neurosci Res 46:456–464

    Article  PubMed  CAS  Google Scholar 

  • Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606

    Article  PubMed  CAS  Google Scholar 

  • Hammang JP, Archer DR, Duncan ID (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp Neurol 147:84–95

    Article  PubMed  CAS  Google Scholar 

  • Hardy RJ, Friedrich VL Jr (1996) Oligodendrocyte progenitors are generated throughout the embryonic mouse brain, but differentiate in restricted foci. Development 122:2059–2069

    PubMed  CAS  Google Scholar 

  • Henrique D, Adam J, Myat A, Chitnis A, Lewis J, Ish-Horowicz D (1995) Expression of a delta homologue in prospective neurons in the chick. Nature 375:787–790

    Article  PubMed  CAS  Google Scholar 

  • Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquie O (1997) Noggin acts downstream of Wnt and sonic hedgehog to antagonize BMP4 in avian somite patterning. Development 124:4605–4614

    PubMed  CAS  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Develop 6:432–438

    Article  CAS  Google Scholar 

  • Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11:774–785

    Article  PubMed  CAS  Google Scholar 

  • Iantosca MR, McPherson CE, Ho S-Y, Maxwell GD (1999) Bone morphogenetic proteins 2 and 4 attenuate apoptosis in a cerebellar primitive neuroectodermal tumor cell line. J Neurosci Res 56:248–258

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Shoji W, Obinata M (1999) MIDA1, an Id-associating protein, has two distinct DNA binding activities that are converted by the association with Id1: a novel function of Id protein. Biochem Biophys Res Commun 266:147–151

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Siew-Lan A, Shiota K, Nakanishi S, Kagyeyama R, Guillemot F (1995) Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to upregulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136–3148

    Article  PubMed  CAS  Google Scholar 

  • Jen Y, Manova K, Benezra R (1997) Each member of the ID gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev Dyn 208:92–106

    Article  PubMed  CAS  Google Scholar 

  • Johe KK, Hazel TG, Muller T, Dugich-Djordjevic M, McKay R (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Kalyani A, Hobson K, Rao MS (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol 186:202–223

    Article  PubMed  CAS  Google Scholar 

  • Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. GLIA 23:191–199

    Article  PubMed  CAS  Google Scholar 

  • Kawabata M, Miyazono K (1999) Signal transduction of the TGFβ superfamily by Smad proteins. J Biochem 125:9–16

    Article  PubMed  CAS  Google Scholar 

  • Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(l) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Bartlett PF (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J Neurosci 15:3653–3661

    PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Richards LJ, Bartlett P (1995) The regulation of neural precursor cells within the mammalian brain. Mol Cell Neurosci 6:2–15

    Article  PubMed  CAS  Google Scholar 

  • Kim Dale J, Vesque C, Lints TJ, Kuber Sampath T, Furley A, Dodd J, Placzek M (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90:257–269

    Article  Google Scholar 

  • Koblar SA, Turnley AM, Classon BJ, Reid KL, Ware CB, Cheema SS, Murphy M, Bartlett PF (1998) Neural precursor differentiation into astrocytes requires signaling through leukemia inhibitory factor receptor. Proc Natl Acad Sci USA 95:3178–3181

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000a) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000b) The Id4HLH protein and the timing of oligodendrocyte differentiation. EMBO J 19:1998–2007

    Article  PubMed  CAS  Google Scholar 

  • Kornblum HI, Hussain RJ, Bronstein JM, Gall CM, Lee DC, Seroogy KB (1997) Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in the rat brain. J Comp Neurol 380:243–261

    Article  PubMed  CAS  Google Scholar 

  • Kornblum HI, Hussain R, Wiesen HJ, Miettinen P, Zurcher SD, Chow K, Derynck R, Werb Z (1998) Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 53:697–717

    Article  PubMed  CAS  Google Scholar 

  • Koyano-Nakagawa N, Kim J, Anderson D, Kintner C (2000) Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127:4203–4216

    PubMed  CAS  Google Scholar 

  • Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 97:8358–8363

    Article  PubMed  CAS  Google Scholar 

  • Lasorella A, Iavarone A, Israel MA (1996) Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol 16:2570–2578

    PubMed  CAS  Google Scholar 

  • Lasorella A, Noseda M, Beyna M, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407:592–598

    Article  PubMed  CAS  Google Scholar 

  • Lazar LM, Blum M (1992) Regional distribution and developmental expression of epidermal growth factor and transforming growth factor a mRNA in mouse brain by a quantitative nuclease protection assay. J Neurosci 12:1688–1697

    PubMed  CAS  Google Scholar 

  • Leavitt BR, Hernit-Grant CS, Macklis JD (1999) Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp Neurol 157:43–57

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Card JP (1987) Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth and protoplasmic astrocytes. J Neurosci 7:2711–2720

    PubMed  CAS  Google Scholar 

  • Levine JM, Stallcup WB (1987) Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. J Neurosci 7:2721–2731

    PubMed  CAS  Google Scholar 

  • Levison SW, Goldman JE (1997) Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res 48:83–94

    Article  PubMed  CAS  Google Scholar 

  • Li CM, Yan RT, Wang SZ (1999) Misexpression of a bHLH gene, cNSCL1, results in abnormal brain development. Dev Dyn 215:238–247

    Article  PubMed  CAS  Google Scholar 

  • Litingtung Y, Chiang C (2000) Control of Shh activity and signaling in the neural tube. Dev Dyn 219:143–154

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Massague J, Ruiz I, Altaba A (1998) Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat Genet 20:325–326

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  PubMed  CAS  Google Scholar 

  • Lyden D, Young AZ, Zagzag D, Yan W, Gerald WO, Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677

    Article  PubMed  CAS  Google Scholar 

  • Mabie PC, Mehler MF, Papavasiliou A, Song Q, Kessler JA (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci 17: 4112–4120

    PubMed  CAS  Google Scholar 

  • Mabie PC, Mehler MF, Kessler JA (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci 19:7077–7088

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  • Mantani A, Hernandez MC, Kuo WL, Israel MA (1998) The mouse Id2 and Id4 genes: structural organization and chromosomal localization. Gene 222:229–235

    Article  PubMed  CAS  Google Scholar 

  • Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124:3955–3963

    PubMed  CAS  Google Scholar 

  • Marmur R, Kessler JA, Zu G, Gokhan S, Mehler MF (1998a) Differentiation of oligodendroglial progenitors from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFβ receptors. J Neurosci 18:9800–9811

    PubMed  CAS  Google Scholar 

  • Marmur R, Mabie PC, Gokhan S, Song Q, Kessler JA, Mehler MF (1998b) Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev Biol 204:577–591

    Article  PubMed  CAS  Google Scholar 

  • Martens DJ, Tropepe V, van der Kooy D (2000) Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J Neurosci 20:1085–1095

    PubMed  CAS  Google Scholar 

  • Martinsen BJ, Bronner-Fraser M (1998) Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281:988–991

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19:773–785

    Article  PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Gokhan S (1999) Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies. Brain Pathol 9:515–526

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Kessler JA (1996) Cytokine regulation of neuronal development. Crit Rev Neurobiol 9:419–446

    Google Scholar 

  • Mehler MF, Kessler JA (1997) Hematolymphopoietic and inflammatory cytokines in neural development. Trends Neurosci 20:357–365

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Marmur R, Gross R, Mabie PC, Zang Z, Papavasiliou A, Kessler JA (1995) Cytokines regulate the cellular phenotype of developing neural lineage species. Int J Dev Neurosci 13: 213–240

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mabie PC, Zhang D, Kessler JA (1997) Bone morphogenetic proteins in the nervous system. Trends Neurosci 20:309–317

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22:74–85

    Article  PubMed  CAS  Google Scholar 

  • Melnikova IN, Bounpheng M, Schatteman GC, Gilliam D, Christy BA (1999) Differential biological activities of mammalian Id proteins in muscle cells. Exp Cell Res 247:94–104

    Article  PubMed  CAS  Google Scholar 

  • Memberg SP, Hall AK (1995) Dividing neuron precursors express neuron-specific tubulin. J Neurobiol 27:26–43

    Article  PubMed  CAS  Google Scholar 

  • Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19:92–96

    Article  PubMed  CAS  Google Scholar 

  • Molne M, Studer L, Tabar L, Ting Y, Eiden M, McKay R (2000) Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J Neurosci Res 59:301–311

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    Article  PubMed  CAS  Google Scholar 

  • Morrow MA, Mayer EW, Perez CA, Adlam M, Siu G (1999) Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol Immunol 36:491–503

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morasutti D, Weiss S, van der Kooy D (1994) Neuronal stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Murtagh LC, Chyung JH, Lassar AB (1999) Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13:225–237

    Article  Google Scholar 

  • Nakamura Y, Sakakibara S, Miyata T, Ogawa M, Shimazaki T, Weiss S, Kageyama R, Okana H (2000) The bHLH gene Hes 1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20:283–293

    PubMed  CAS  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999a) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Wiese S, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Yoshida K, Kishimoto T, Sendtner M, Taga T (1999b) Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J Neurosci 19:5429–5434

    PubMed  CAS  Google Scholar 

  • Neuman K, Nornes HO, Neuman T (1995) Helix-loop-helix transcription factors regulate Id2 gene promoter activity. FEBS Lett 374:279–283

    Article  PubMed  CAS  Google Scholar 

  • Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO (1993) Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol 160:186–195

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VH, Trout J, Connors SA, Andermann P, Weinberg E, Mullins MC (2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127:1209–1220

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Lin X-H, Giese N, Heldin C-H, Stallcup WB (1996) Co-localization of NG2 proteoglycan and PDGF a-receptor on 02A progenitor cells in the developing rat brain. J Neurosci Res 43:299–314

    Article  PubMed  CAS  Google Scholar 

  • Norton JD, Atherton GT (1998) Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol 18:2371–2381

    PubMed  CAS  Google Scholar 

  • Norton JD, Deed RW, Craggs G, Sablitzky F (1998) ID helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8:58–65

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hesl and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10:392–399

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R (1993) Oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–198

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Goderie S, Shen Q, Stern J, Temple S (1998) Intrinsic programs of patterned cell lineage in isolated vertebrate CNS ventricular zone cells. Development 125:3143–3152

    PubMed  CAS  Google Scholar 

  • Qian X, Davis AD, Goderie SK, Temple S (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18:81–93

    Article  PubMed  CAS  Google Scholar 

  • Rajan P, McKay RDG (1998) Multiple routes to astrocytic differentiation in the CNS. J Neurosci 18:3620–3629

    PubMed  CAS  Google Scholar 

  • Rao MS (1999) Multipotent and restricted precursors in the central nervous system. Anat Rec 257:137–148

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  PubMed  CAS  Google Scholar 

  • Richards LJ, Kilpatrick TJ, Dutton R, Tan S-S, Gearing DP, Bartlett PF, Murphy M (1996) Leukemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur J Neurosci 2:291–299

    Article  Google Scholar 

  • Riechmann V, Sablitzky F (1995) Mutually exclusive expression of two dominant-negative helix-loop-helix (dnHLH) genes, ID4 and ID3, in the developing brain of the mouse suggests distinct regulatory roles of these dnHLH proteins during cellular proliferation and differentiation of the nervous system. Cell Growth Differ 6:837–843

    PubMed  CAS  Google Scholar 

  • Riechmann V, van Cruchten I, Sablitzky F (1994) The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucleic Acids Res 22: 749–755

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R (1999) Genetic control of cortical regionalization and connectivity. Cereb Cortex 9:524–532

    Article  PubMed  CAS  Google Scholar 

  • Sablitzky F, Moore A, Bromley M, Deed RW, Newton JS, Norton JD (1998) Stage- and subcellular-specific expression of Id proteins in male germ and Sertoli cells implicates distinctive regulatory roles for Id proteins during meiosis, spermatogenesis, and Sertoli cell function. Cell Growth Differ 9:1015–1024

    PubMed  CAS  Google Scholar 

  • Sasai Y (1998) Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21:455–458

    Article  PubMed  CAS  Google Scholar 

  • Sdrulla A, Wang S, Barres BA (1999) Overexpression of the Id2 protein inhibits oligodendrocyte differentiation in vitro. Soc Neurosci Abstr 25:2039

    Google Scholar 

  • Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360

    Article  PubMed  CAS  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85:331–343

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Qian X, Capela A, Temple S (1998) Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J Neurobiol 36:162–174

    Article  PubMed  CAS  Google Scholar 

  • Shou J, Rim PC, Calof AL (1999) BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nat Neurosci 2:339–345

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom S, Bengtsson H, Ebendal T (1996) Expression of serine/threonine kinase receptors including the bone morphogenetic factor type II receptor in the developing and adult rat brain. Cell Tissue Res 286:269–279

    Article  PubMed  CAS  Google Scholar 

  • Song Q, Mehler MF, Kessler JA (1998) Bone morphogenetic proteins induce apoptosis and growth factor dependence of cultured sympathoadrenal progenitor cells. Dev Biol 196:119–127

    Article  PubMed  CAS  Google Scholar 

  • Stewart HJ, Zoidl G, Rossner M, Brennan A, Zoidl C, Nave KA, Mirsky R, Jessen KR (1997) Helix-loop-helix proteins in Schwann cells: a study of regulation and subcellular localization of Ids, REB, and E12/47 during embryonic and postnatal development. J Neurosci Res 50:684–701

    Article  PubMed  Google Scholar 

  • Takahashi T, Misson JP, Caviness VS (1990) Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 302:15–28

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148

    Article  PubMed  CAS  Google Scholar 

  • Thatikunta P, Qin W, Christy BA, Tennekoon GI, Rutkowski JL (1999) Reciprocal Id expression and myelin gene regulation in Schwann cells. Mol Cell Neurosci 14:519–528

    Article  PubMed  CAS  Google Scholar 

  • Thomas J-L, Spassky N, Perez-Villegas EM, Olivier C, Cobos I, Goujet-Zalc C, Martinez S, Zalc B (2000) Spatiotemporal development of oligodendrocytes in the embryonic brain. J Neurosci Res 59:471–476

    Article  PubMed  CAS  Google Scholar 

  • Threadgil DW, Flugosz AA, Hansen AA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  Google Scholar 

  • Toma JG, El-Bizri H, Barnabe-Heider F, Aloyz R, Miller FD (2000) Evidence that helix-loop-helix proteins collaborate with retinoblastoma tumor suppressor protein to regulate cortical neurogenesis. J Neurosci 20:7648–7656

    PubMed  CAS  Google Scholar 

  • Torii M, Matsuzaki F, Osumi N, Kaibuchi K, Nakamura S, Casarosa S, Guillemot F, Nakafuku M (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126:443–456

    PubMed  CAS  Google Scholar 

  • Tzeng SF, de Vellis J (1998) Id1, Id2, and Id3 gene expression in neural cells during development. GLIA 24:372–381

    Article  PubMed  CAS  Google Scholar 

  • Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966

    Google Scholar 

  • Wang S, Barres BA (2000) Up a notch: instructing gliogenesis. Neuron 27:197–200

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptor activation inhibits oligodendrocytes differentiation. Neuron 21:63–75

    Article  PubMed  Google Scholar 

  • Wang S, Hicks C, Weinmaster G, Barres BA (1999) Does the notch pathway control the timing and location of myelination? Soc Neurosci Abstr 25:2040

    Google Scholar 

  • Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81

    Article  PubMed  CAS  Google Scholar 

  • Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggit D, Koblar SA, Gliniak BC, McKenna HJ, Papayannopoulou T, Thoma B, Cheng L, Donovan PJ, Peschon JJ, Bartlett PF, Willis CR, Wright BD, Carpenter MK, Davison BL, Gearing DP (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283–1299

    PubMed  CAS  Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996a) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 9:387–393

    Article  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996b) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Weiwei L, Cogswell CA, LoTurco J J (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862

    Google Scholar 

  • Whitman M (1998) Smads and early developmental signaling by the TGFf superfamily. Genes Dev 12:2445–2462

    Article  PubMed  CAS  Google Scholar 

  • Wrana JL (2000) Regulation of smad activity. Cell 100:189–192

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Katagiri T, Ikeda T, Wozney JM, Rosen V, Wang EA, Kohn AJ, Suda T, Yoshida S (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol 113:681–687

    Article  PubMed  CAS  Google Scholar 

  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93:755–766

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Mehler MF, Song Q, Kessler JA (1998) Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating TrkC expression. J Neurosci 18:3314–3326

    PubMed  CAS  Google Scholar 

  • Zhong W, Jiang M-M, Schonemann MD, Meneses JJ, Pedersen RA, Jan LY, Jan YN (2000) Mouse numb is an essential gene involved in cortical neurogenesis. Proc Natl Acad Sci USA 97: 6844–6849

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Mehler MF, Mabie PC, Kessler JA (1999a) Developmental changes in progenitor cells responsiveness to cytokines. J Neurosci Res 56:131–145

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Mehler MF, Zhao J, Yung SY, Kessler JA (1999b) Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev Biol 215:118–129

    Article  PubMed  CAS  Google Scholar 

  • Zuniga A, Haramis AP, McMahon AP, Zeller R (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401:598–602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehler, M.F. (2002). Mechanisms Regulating Lineage Diversity During Mammalian Cerebral Cortical Neurogenesis and Gliogenesis. In: Hohmann, C. (eds) Cortical Development. Results and Problems in Cell Differentiation, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46006-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46006-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53665-6

  • Online ISBN: 978-3-540-46006-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics