Skip to main content

Family Iridoviridae: Poor Viral Relations No Longer

  • Chapter
Lesser Known Large dsDNA Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 328))

Members of the family Iridoviridae infect a diverse array of invertebrate and cold-blooded vertebrate hosts and are currently viewed as emerging pathogens of fish and amphibians. Iridovirid replication is unique and involves both nuclear and cytoplasmic compartments, a circularly permuted, terminally redundant genome that, in the case of vertebrate iridoviruses, is also highly methylated, and the efficient shutoff of host macromolecular synthesis. Although initially neglected largely due to the perceived lack of health, environmental, and economic concerns, members of the genus Ranavirus, and the newly recognized genus Megalocytivirus, are rapidly attracting growing interest due to their involvement in amphibian population declines and their adverse impacts on aquaculture. Herein we describe the molecular and genetic basis of viral replication, pathogenesis, and immunity, and discuss viral ecology with reference to members from each of the invertebrate and vertebrate genera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahne W, Schlotfeldt HJ, Thomsen I (1989) Fish viruses: isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis). J Vet Med B 36:333–336

    CAS  Google Scholar 

  • Ahne W, Bearzotti M, Bremont M, Essbauer S (1998) Comparison of European systemic piscine and amphibian iridoviruses with epizootic haematopoietic necrosis virus and frog virus 3. J Vet Med B 45:373–383

    CAS  Google Scholar 

  • Alcami A, Koszinowski UH (2000) Viral mechanisms of immune evasion. Mol Med Today 6:365–372

    PubMed  CAS  Google Scholar 

  • Allen MJ, Schroeder DC, Holden MTG, Wilson WH (2006) Evolutionary history of the Coccolithoviridae. Mol Biol Evol 23:86–92

    PubMed  CAS  Google Scholar 

  • Allender MC, Fry MM, Irizarry AR, Craig L, Johnson AJ, Jones M (2006) Intracytoplasmic inclusions in circulating leukocytes from an Eastern Box turtle ( Terrapene carolina carolina ) with an iridoviral infection. J Wildlife Dis 42:677–684

    Google Scholar 

  • Anderson IG, Prior HC, Rodwell BJ, Harris GO (1993) Iridovirus-like virions in imported dwarf gourami ( Colisa lalia ) with systemic amoebiasis. Aust Vet J 70:66–67

    PubMed  CAS  Google Scholar 

  • Armstrong RD, Ferguson HW (1989) Systemic viral disease of the chromid cichlid Etroplus maculatus. Dis Aquat Org 7:155–157

    Google Scholar 

  • Ariel E, Tapiovaara H, Olesen NJ (1999) Comparison of pike-perch ( Stizostedion lucioperca), cod ( Gadus morhua ) and turbot ( Scophthslmus maximus ) iridovirus isolates with reference to other piscine and amphibian iridovirus isolates. European Association of Fish Pathologists, VIII. International Conference on Diseases of Fish and Shellfish, Rhodes, Greece, 20–24 September

    Google Scholar 

  • Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242

    PubMed  CAS  Google Scholar 

  • Beattie E, Tartaglia J, Paoletti E (1991) Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. Virology 183:419–422

    PubMed  CAS  Google Scholar 

  • Bideshi DK, Renault S, Stasiak K, Federici BA, Bigot Y (2003) Phylogenetic analysis and possible function of bro- like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531–2544

    PubMed  CAS  Google Scholar 

  • Bloch B, Larsen JL (1993) An iridovirus-like agent associated with systemic infection in cultured turbot Scophthalmus maximus fry in Denmark. Dis Aquat Org 15:235–240

    Google Scholar 

  • Boehme KW, Compton T (2004) Innate sensing of viruses by Toll-like receptors. J Virol 78:7867–7873

    PubMed  CAS  Google Scholar 

  • Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG (1999) Pathology, isolation and molecular characterization of an iridovirus from tiger salamanders in Saskatchewan. J Wildlife Dis 35:413–429

    CAS  Google Scholar 

  • Boots M, Greenman J, Ross D, Norman R, Hails R, Sait S (2003) The population dynamical implications of covert infections in host-microparasite interactions. J Anim Ecol 72:1064–1072

    Google Scholar 

  • Bouchier-Hayes L, Martin SJ (2002) CARD games in apoptosis and immunity. EMBO Rep 3:616–621

    PubMed  CAS  Google Scholar 

  • Braunwald J, Tripier F, Kirn A (1979) Comparison of the properties of enveloped and naked frog virus 3 (FV3) particles. J Gen Virol 45:673–682

    CAS  Google Scholar 

  • Braunwald J, Nonnenmacher H, Tripier-Darcy F (1985) Ultrastructural and biochemical study of frog virus 3 uptake by BHK-21 cells. J Gen Virol 66:283–293

    PubMed  Google Scholar 

  • Bremont J, Bernard M (1995) Molecular biology of fish viruses: a review. Vet Res 26:341–351

    PubMed  Google Scholar 

  • Brunner JL, Schock DM, Collins JPl, Davidson EW (2004) The role of an intraspecific reservoir in the persistence of a lethal ranavirus. Ecology 85:560–566

    Google Scholar 

  • Brunner JL, Richards K, Collins JP (2005) Dose and host characteristics influence virulence of ranavirus infections. Oecolgia 144:399–406

    Google Scholar 

  • Brunner JL, Schock DM, Collins JP (2007) Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Dis Aquat Org 77:87–95

    PubMed  CAS  Google Scholar 

  • Caipang CM, Hirono I, Aoki T (2006a) Immunogenicity, retention, and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red sea-bream, Pagrus major. Fish Shellfish Immunol 20:597–609

    CAS  Google Scholar 

  • Caipang CM, Takano T, Hirono I, Aoki T (2006b) Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish Shellfish Immunol 22:130–138

    Google Scholar 

  • Cano I, Ferro P, Alonso MC, Bergmann SM, Romer-Oberdorfer A, Garcia-Rosado E, Castro D, Borrego JJ (2006) Development of molecular techniques for detection of lymphocystis disease virus in different marine fish species. J Appl Microbiol 102:32–40

    Google Scholar 

  • Carter JB (1973a) The mode of transmission of Tipula iridescent virus. I. Source of infection. J Invert Pathol 21:123–130

    Google Scholar 

  • Carter JB (1973b) The mode of transmission of Tipula iridescent virus. II. Route of infection. J Invertebr Pathol 21:136–143

    Google Scholar 

  • Cerutti M, Devauchelle G (1980) Inhibition of macromolecular synthesis in cells infected with an invertebrate virus (iridovirus type 6 or CIV). Arch Virol 63:297–303

    PubMed  CAS  Google Scholar 

  • Cerutti M, Devauchelle G (1990) Protein composition of Chilo iridescent virus. In: Darai G (ed) Molecular biology of iridoviruses, Kluwer, Boston, pp 81–112

    Google Scholar 

  • Cerutti M, Cerutti P, Devuachelle G (1989) Infectivity of vesicles prepared from Chilo iridescent virus inner membrane: evidence for recombination between associated DNA fragments. Virus Res 12:299–314

    PubMed  CAS  Google Scholar 

  • Chen ZX, Zheng JC, Jiang YL (1999) A new iridovirus isolated from soft-shelled turtle. Virus Res 63:147–151

    PubMed  CAS  Google Scholar 

  • Chinchar VG (2000) Ecology of viruses of cold-blooded vertebrates. In: Hurst CJ (ed) Virus ecology, Academic, New York, pp 413–445

    Google Scholar 

  • Chinchar VG (2002) Ranaviruses (family Iridoviridae ): emerging cold-blooded killers. Arch Virol 147:447–470

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Dholakia JN (1989) Frog virus 3-induced translational shut-off: activation of an eIF-2 kinase in virus-infected cells. Virus Res 14:207–224

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Granoff A (1984) Isolation and characterization of a frog virus 3 variant resistant to phosphonoacetate: genetic evidence for a virus-specific DNA polymerase. Virology 138:357–361

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Granoff A (1986) Temperature-sensitive mutants of frog virus 3: biochemical and genetic characterization. J Virol 58:192–202

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Mao J (2000) Molecular diagnosis of iridovirus infections in cold-blooded animals. Sem Avian Exotic Pet Med 9:27–35

    Google Scholar 

  • Chinchar VG, Yu W (1990) Frog virus 3-mediated translational shut-off: frog virus 3 messages are translationally more efficient than host and heterologous viral messages under conditions of increased translational stress. Virus Res 16:163–174

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Yu W (1992) Metabolism of host and viral mRNAs in frog virus 3-infected cells. Virology 186:435–443

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Goorha R, Granoff A (1984) Early proteins are required for the formation of frog virus 3 assembly sites. Virology 135:148–156

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Bryan L, Wang J, Long S, Chinchar GD (2003) Induction of apoptosis in frog virus 3-infected cells. Virology 306:303–312

    PubMed  CAS  Google Scholar 

  • Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy V, Williams T (2005) Iridoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: 8th report of the International Committee on the Taxonomy of Viruses, Elsevier, London, pp 163–175

    Google Scholar 

  • Choi S-K, Kwon S-R, Nam Y-K, Kim S-K, Kim K-H (2006) Organ distribution of red sea bream iridovirus (RSIV) DNA in asymptomatic yearling and fingerling rock bream ( Oplegnathus fasciatus ) and effects of water temperature on transition of RSIV into acute phase. Aquaculture 256:23–26

    CAS  Google Scholar 

  • Chua HC, Ng, ML, Woo JJ, Wee JY (1994) Investigation of outbreaks of a novel disease, “Sleepy Grouper Disease,” affecting the brown-spotted grouper, Epinephelus tauvina Forskal. J Fish Dis 17:417–427

    Google Scholar 

  • Christian P, Richards AR, Williams T (2006) Differential adsorption of occluded and non-occluded insect pathogenic viruses to soil forming minerals. Appl Environ Microbiol 72:4648–4652

    PubMed  CAS  Google Scholar 

  • Clark HF, Brennan JC, Zeigel RF, Karzon DT (1968) Isolation and characterization of viruses from the kidneys of Rana pipiens with renal adenocarcinoma before and after passage in the red eft ( Triturus viridescens ). J Virol 2:629–640

    PubMed  CAS  Google Scholar 

  • Constantino M, Christian P, Marina CF, Williams T (2001) A comparison of techniques for detecting Invertebrate iridescent virus 6. J Virol Meth 98:109–118

    CAS  Google Scholar 

  • Coupar BEH, Goldie SG, Hyatt AD, Pallister JA (2005) Identification of a Bohle iridovirus thymidine kinase gene and demonstration of activity using vaccinia virus. Arch Virol 150:1797–1812

    PubMed  CAS  Google Scholar 

  • Cunningham AA, Langton TES, Bennett PM, Lewin JF, Drury SEV, Gough RE, MacGregor SK (1996) Pathological and microbiological findings from incidents of unusual mortality of the common frog Rana temporaria. Phil Trans R Soc Lond B 351:1539–1557

    CAS  Google Scholar 

  • Danayadol Y, Direkbusarakom S, Boonyaratpalin S, Miyazaki T, Miyata M (1996) An outbreak of iridovirus-like infection in brown-spotted grouper ( Epinephelus malabaracus ) cultured in Thailand. Aquat Anim Health Res Inst Newsletter 5:6

    Google Scholar 

  • Davidson EW, Jancovich JK, Borland S, Newberry M, Gresens J (2003) Dermal lesions, hemorrhage, and limb swelling in laboratory axolotls. Lab Animal 32:23–24

    PubMed  Google Scholar 

  • D'Costa SM, Yao H, Bilimoria SL (2001) Transcription and temporal cascade in Chilo iridescent virus infected cells. Arch Virol 146:2165–2178

    PubMed  Google Scholar 

  • D'Costa SM, Yao HJ, Bilimoria SL (2004) Transcriptional mapping in Chilo iridescent virus infections. Arch Virol 149:723–742

    PubMed  Google Scholar 

  • Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL (2006) Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus) J Virol 80:8439–8449

    PubMed  CAS  Google Scholar 

  • Delius H, Darai G, Flügel RM (1984) DNA analysis of insect iridescent virus 6: evidence for circular permutation and terminal redundancy. J Virol 49:609–614

    PubMed  CAS  Google Scholar 

  • De Voe R, Geissler K, Elmore S, Rotstein D, Lewbart G, Guy J (2004) Ranavirus-associated morbidity and mortality in a group of captive Eastern box turtles (Terrapene carolina carolina). J Zoo Wildlife Med 35:534–543

    Google Scholar 

  • Do JW, Moon C H, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK, Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW (2004) Complete genomic DNA sequence of rock bream iridovirus. Virology 325:351–363

    PubMed  CAS  Google Scholar 

  • Do JW, Cha SJ, Kim YC, An EJ, Lee NS, Choi HJ, Lee CH, Park MS, Kim JW, Kim YC, Park JW (2005a) Phylogenetic analysis of the major capsid protein gene of iridovirus isolates from cultured flounder Paralichthys olivaceus in Korea. Dis Aquat Org 64:193–200

    CAS  Google Scholar 

  • Do JW, Cha SJ, Kim JS, An EJ, Park MS, Kim JW, Lim YC, Park MA, Park JW (2005b) Sequence variation in the gene encoding the major capsid protein of Korean fish iridovirus. Arch Virol 150:351–359

    CAS  Google Scholar 

  • Docherty DE, Meteyer CU, Wang J, Mao J, Case ST, Chinchar VG (2003) Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events. J Wildlife Dis 39:556–566

    CAS  Google Scholar 

  • Drennan JD, Ireland S, LaPatra SE, Grabowski L, Carrothers TK, Cain KD (2005) High-density rearing of white sturgeon Acipenser transmontanus (Richardson) induces white sturgeon iridovirus disease among asymptomatic carriers. Aquacult Res 36:824–827

    Google Scholar 

  • Drennan JD, LaPatra SE, Samson CA, Ireland S, Eversman KF, Cain KD (2007) Evaluation of lethal and non-lethal sampling methods for the detection of white sturgeon iridovirus infection in white sturgeon, Acipenser transmontanus (Richardson). J Fish Dis 30:367–379

    PubMed  CAS  Google Scholar 

  • Dukes TW, Lawler AR (1975) The ocular lesions of naturally occurring lymphocystis in fish. Can J Comp Med 39:406–410

    PubMed  CAS  Google Scholar 

  • Eaton HE, Metcalf J, Penny E, Tcherepanov V, Upton C, Brunetti CR (2007) Comparative genomic analysis of the family Iridoviridae : Re-annotating and defining the core set of irido-virus genes. Virol J 4:11

    PubMed  Google Scholar 

  • Elston R (1997) Bivalve mollusk viruses. World J Microbiol Biotechnol 13:393–403

    Google Scholar 

  • Epifano C, Krijnse-Locker J, Salas ML, Rodriguez JM, Salas J (2006) The African swine fever virus nonstructural protein pB602L is required for formation of the icosahedral capsid of the virus particle. J Virol 80:12260–12270

    PubMed  CAS  Google Scholar 

  • Essani K, Goorha R, Granoff A (1987) Mutation in a DNA binding protein reveals an association between DNA methyltransferase activity and a 26,000 Da polypeptide in FV3-infected cells. Virology 161:211–217

    PubMed  CAS  Google Scholar 

  • Essbauer S, Ahne W (2002) The epizootic haematopoietic necrosis virus (Iridoviridae) induces apoptosis in vitro. J Vet Med B 49:25–30

    CAS  Google Scholar 

  • Essbauer S, Bremont M, Ahne W (2001) Comparison of the eIF-2 alpha homologous proteins of seven ranaviruses (Iridoviridae). Virus Genes 23:347–359

    PubMed  CAS  Google Scholar 

  • Essbauer S, Fischer U, Bergmann S, Ahne W (2004) Investigations on ORF 167L of lymphocystis disease virus (Iridoviridae). Virus Genes 28:19–39

    PubMed  CAS  Google Scholar 

  • Federici BA (1980) Isolation of an iridovirus from two terrestrial isopods, the pill bug, Armadillidium vulgare and the sow bug, Porcellio dilatatus. J Invertebr Pathol 36:373–381

    Google Scholar 

  • Fedorova VG (1986) On finding larvae of Culex territans Walk. and Dixidae infected with iridovirus in the forest zone of Novgorrod region (in Russian). Med Parazitol Mosk 3:86–87

    PubMed  Google Scholar 

  • Fischer M, Schnitzler P, Delius H, Darai G (1988) Identification and characterization of the repetitive DNA element in the genome of insect iridescent virus type 6. Virology 167:485–496

    PubMed  CAS  Google Scholar 

  • Fox SF, Greer AL, Torres-Cervantes R, Collins JP (2006) First case of ranavirus-associated morbidity and mortality in natural populations of the South American frog Atelognathus patagonicus. Dis Aquat Org 72:87–92

    PubMed  Google Scholar 

  • Fowler HG (1989) An epizootic iridovirus of Orthoptera (Gryllotalpidae: Scaptericus borellii) and its pathogenicity to termites (Isoptera: Cryptotermes). Rev Microbiol 20:115–120

    Google Scholar 

  • Fuji K, Kobayashi K, Hasegawa O, Moura Coimbra MR, Sakamoto T, Okamoto N (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254:203–210

    CAS  Google Scholar 

  • Galli L, Pereira A, Márquez A, Mazzoni R (2006) Ranavirus detection by PCR in cultured tadpoles (Rana catesbeiana Shaw 1802) from South America. Aquaculture 257:78–82

    CAS  Google Scholar 

  • Gantress J, Bell A, Maniero G, Cohen N, Robert J (2003) Xenopus, a model to study immune responses to iridovirus. Virology 311:254–262

    PubMed  CAS  Google Scholar 

  • Gendrault J-L, Steffan A-M, Bingen A, Kirn A (1981) Penetration and uncoating of frog virus 3 in cultured rat Kupffer cells. Virology 112:375–384

    PubMed  CAS  Google Scholar 

  • Georgiadis MP, Hedrick RP, Johnson WO, Yun S, Gardner IA (2000) Risk factors for outbreaks of disease attributable to white sturgeon iridovirus and white sturgeon herpesvirus-2 at a commercial sturgeon farm. Am J Vet Res 61:1232–1240

    PubMed  CAS  Google Scholar 

  • Georgiadis MP, Hedrick RP, Carpenter TE, Gardner IA (2001) Factors influencing transmission, onset and severity of outbreaks due to white sturgeon iridovirus in a commercial hatchery. Aquaculture 194:21–35

    Google Scholar 

  • Gil J, Garcia MA, Gomez-Puertas P, Guerra S, Rullas J, Nakano H, Alcami J, Esteban M (2004) TRAF family proteins link PKR with NF-κB activation. Mol Cell Biol 24:4502–4512

    PubMed  CAS  Google Scholar 

  • Glaser R, Litsky ML, Padgett DA, Baiocchi RA, Yang EV, Chen M, Yeh PE, Green-Church KB, Caliguiri MA, Williams MV (2006) EBV-encoded dUTPase induces immune dysregulation: implications for the pathophysiology of EBV-associated disease. Virology 346:205–218

    PubMed  CAS  Google Scholar 

  • Go J, Whittington R (2006) Experimental transmission and virulence of a megalocytivirus (Family Iridoviridae) of dwarf gourami (Colisa lalia) from Asia in Murray cod (Maccullochella peelii peelii) in Australia. Aquaculture 258:140–149

    Google Scholar 

  • Go J, Lancaster M, Deece K, Dhungyel O, Whittington R (2006) The molecular epidemiology of iridovirus in Murray cod (Muccullochella peeli peelii) and dwarf gourami (Colisa lalia) from distant biogeographical regions suggests a link between trade in ornamental fish and emerging iridoviral diseases. Mol Cell Probes 20:212–222

    PubMed  CAS  Google Scholar 

  • Goorha R (1981) Frog virus 3 requires RNA polymerase II for its replication. J Virol 37:496–499

    PubMed  CAS  Google Scholar 

  • Goorha R (1982) Frog virus 3 DNA replication occurs in two stages. J Virol 43:519–528

    PubMed  CAS  Google Scholar 

  • Goorha R, Dixit P (1984) A temperature-sensitive mutant of frog virus 3 is defective in second stage DNA replication. Virology 136:186–195

    PubMed  CAS  Google Scholar 

  • Goorha R, Granoff A (1979) Icosahedral cytoplasmic deoxyriboviruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. Plenum, New York, pp 347–399

    Google Scholar 

  • Goorha R, Murti KG (1982) The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natl Acad Sci U S A 79:248–262

    PubMed  CAS  Google Scholar 

  • Goorha R, Murti G, Granoff A, Tirey R (1978) Macromolecular synthesis in cells infected by frog virus 3: VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology 84:32–50

    PubMed  CAS  Google Scholar 

  • Goorha R, Willis DB, Granoff A, Naegele RF (1981) Characterization of a temperature-sensitive mutant of frog virus 3 defective in DNA replication. Virology 112:40–48

    PubMed  CAS  Google Scholar 

  • Goorha R, Granoff A, Willis DB, Murti KG (1984) The role of DNA methylation in virus replication: inhibition of frog virus 3 replication by 5-azacytidine. Virology 138:94–102

    PubMed  CAS  Google Scholar 

  • Granoff A, Came PE, Breeze DC (1966) Viruses and renal carcinoma of Rana pipiens : I. The isolation and properties of virus from normal and tumor tissues. Virology 29:133–148

    PubMed  CAS  Google Scholar 

  • Grant EC, Inendino KR, Love WJ, Philipp DP, Goldberg TL (2005) Effects of practices related to catch-and-release angling on mortality and viral transmission in juvenile largemouth bass infected with largemouth bass virus. J Aquat Anim Health 17:315–322

    Google Scholar 

  • Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the U S A 1996–2001. Ann N Y Acad Sci 969:323–339

    PubMed  Google Scholar 

  • Greer AL, Berrill M, Wilson PJ (2005) Five amphibian mortality events associated with ranavirus infection in south central Ontario, Canada. Dis Aquat Org 67:9–14

    PubMed  Google Scholar 

  • Gregory CR, Latimer KS, Pennick KE, Benson K, Moore T (2006) Novel iridovirus in a nautilus (Nautilus spp.). J Vet Diagn Invest 18:208–211

    PubMed  Google Scholar 

  • Grosholz ED (1992) Interactions of intraspecific, interspecific and apparent competition with host-pathogen population dynamics. Ecology 73:507–514

    Google Scholar 

  • Grosholz ED (1993) The influence of habitat heterogeneity on host-pathogen population dynamics. Oecologia 96:347–353

    Google Scholar 

  • Hanson LA, Rudis MR, Vasquez-Lee M, Montgomery RD (2006) A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol J 3:28

    PubMed  Google Scholar 

  • He JG, Wang SP, Zeng K, Huang ZJ, Chan SM (2000) Systemic disease caused by an iridovirus-like agent in cultured mandarinfish, Siniperca chuatsi (Basilewsky), in China. J Fish Dis 23:219–222

    Google Scholar 

  • He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM (2001) Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 291:126–139

    PubMed  CAS  Google Scholar 

  • He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM (2002) Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 292:185–197

    PubMed  CAS  Google Scholar 

  • He W, Yin ZX, Li Y, Huo WL, Guan HJ, Weng SP, Chan SM, Je JG (2006) Differential gene expression profile in spleen of mandarin fish Siniperca chuasti infected with ISKNV, derived from suppression subtractive hybridization. Dis Aquat Org 73:113–122

    PubMed  CAS  Google Scholar 

  • Heath CM, Windsor M, Wileman T (2001) Aggresomes resemble sites specialized for virus assembly. J Cell Biol 153:449–456

    PubMed  CAS  Google Scholar 

  • Hedrick RP, Groff JM, McDowell T, Wingfield WH (1990) An iridovirus infection of the integument of white sturgeon (Acipenser transmontanus). Dis Aquat Org 8:39–44

    Google Scholar 

  • Hedrick RP, McDowell TS, Ahne W, Torhy C, de Kinkelin P (1992a) Properties of three iridovi-rus-like agents associated with systemic infections of fish. Dis Aquat Org 13:203–209

    Google Scholar 

  • Hedrick RP, McDowell TS, Groff JM, Yun S, Wingfield WH (1992b) Isolation and properties of an iridovirus-like agent from white sturgeon Acipenser transmontanus. Dis Aquat Org 12:75–81

    Google Scholar 

  • Hernández O, Maldonado G, Williams T (2000) An epizootic of patent iridescent virus disease in multiple species of blackflies in Chiapas, Mexico. Med Vet Entomol 14:458–462

    PubMed  Google Scholar 

  • Hernández O, Marina CF, Valle J, Williams T (2005) Persistence of invertebrate iridescent viruses in artificial tropical aquatic environments. Arch Virol 150:2357–2363

    PubMed  Google Scholar 

  • Holm GH, Zurney J, Tumilasci V, Leveille S, Danthi P, Hiscott, Sherry B, Dermody TS (2007) RIG-I and IPS-1 augment proapoptotic responses following mammalian reovirus infection via IRF-3. J Biol Chem 282:21953–21956

    PubMed  CAS  Google Scholar 

  • Hu GB, Cong RS, Fan TJ, Mei XG (2004) Induction of apoptosis in a flounder gill cell line by lymphocystis disease virus infection. J Fish Dis 27:657–662

    PubMed  Google Scholar 

  • Huang X, Zhang Q (2007) Improvement and observation of immunoelectron microscopic method for the localization of frog Rana grylio virus (RGV) in infected fish cells. Micron 38:599–606

    PubMed  CAS  Google Scholar 

  • Mathieson WB, Lee PE (1981) Cytology and autoradiography of Tipula iridescent virus infection of insect suspension cell cultures, J Ultrastruct Res 74:59–68

    PubMed  CAS  Google Scholar 

  • McMillan N, Kalmakoff J (1994) RNA transcript mapping of the Wiseana iridescent virus genome. Virus Res 32:343–352

    PubMed  CAS  Google Scholar 

  • McMillan NA, Davison S, Kalmakoff J (1990) Comparison of the genomes of two sympatric iridescent viruses (types 9 and 16). Arch Virol 114:277–284

    PubMed  CAS  Google Scholar 

  • Mendelson JR, Lips KR, Gagliardo RW, Rabb GB, Collins JP et al (2006) Confronting amphibian declines and extinctions. Science 313:48

    PubMed  CAS  Google Scholar 

  • Miller DL, Rajeev S, Gray MJ, Baldwin CA (2007) Frog virus 3 infection, cultured American bullfrogs. Emerg Inf Dis 13:343

    Google Scholar 

  • Miller LK (1996) Insect viruses. In: Fields BN, Knipe DM, Howley PM (eds) Fundamental virology, Lippincott-Raven, Philadelphia, pp 401–424

    Google Scholar 

  • Moody NJG, Owens L (1994) Experimental demonstration of pathogenicity of a frog virus, bohle iridovirus, for a fish species, barramundi Lates calcarifer. Dis Aquat Org 18:95–102

    Google Scholar 

  • Moore JB, Smith GL (1992) Steroid hormone synthesis by vaccinia virus enzymes: a new type of virus virulence factor. EMBO J 11:1973–1980

    PubMed  CAS  Google Scholar 

  • Morales HD, Robert J (2007) Characterization of primary and memory CD8 T cell responses against ranavirus (FV3) in Xenopus laevis. J Virol 81:2240–2248

    PubMed  CAS  Google Scholar 

  • Mullens BA, Velten RK, Federici BA (1999) Iridescent virus infection in Culicoides variipennis sonorensis and interactions with the mermithid parasite Heleidomermis magnapapula. J Invertebr Pathol 73:231–233

    PubMed  CAS  Google Scholar 

  • Murti KG, Goorha R (1989) Synthesis of FV3 proteins occurs on intermediate filament-bound polyribosomes. Biol Cell 65:205–214

    PubMed  CAS  Google Scholar 

  • Murti KG, Goorha R (1990) Virus-cytoskeleton interaction during replication of frog virus 3. In: Darai G (ed) Molecular biology of iridoviruses, Kluwer, Boston, pp 137–162

    Google Scholar 

  • Murti KG, Goorha R, Klymkowsky MW (1988) A functional role for intermediate filaments in the formation of FV3 assembly sites. Virology 162:264–269

    PubMed  CAS  Google Scholar 

  • Nakajima K, Kunita J (2005) Red sea bream iridoviral disease. Uirusu 55:115–125

    PubMed  CAS  Google Scholar 

  • Nakajima K, MaenoY (1998) Pathogenicity of red sea bream iridovirus and other fish iridoviruses to red sea bream. Fish Pathol 33:143–144

    Google Scholar 

  • Nakajima K, Inouye K, Sorimachi M (1998) Viral diseases in cultured marine fish in Japan. Fish Pathol 33:181–188

    Google Scholar 

  • Nakajima K, Maeno Y, Honda A, Yokoyama K, Tooriyama T, Manabe S (1999) Effectiveness of a vaccine against red sea bream iridovirus disease in a field trial test. Dis Aquat Org 36:73–75

    PubMed  CAS  Google Scholar 

  • Nakajima K, Ito T, Kurita J, Kawakami H, Itano T, Fukuda Y, Aoi Y, Tooriyama, Manabe S (2002) Effectiveness of a vaccine against red sea bream iridoviral disease in various cultured marine fish under laboratory conditions. Fish Pathol 37:90–91

    Google Scholar 

  • Nalcacioglu R, Marks H, Vlak JM, Demirbag Z, van Oers MM (2003) Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes. Virology 317:321–329

    PubMed  CAS  Google Scholar 

  • Netherton C, Moffet K, Brooks E, Wileman T (2007) A guide to viral inclusions, membrane rearrangements, factories and viroplasms produced during virus replication. Adv. Virus Res. 70: 101–182

    CAS  Google Scholar 

  • Office International des Epizooties (2006) Aquatic Animal Health Code, 9th edn. OIE, Paris

    Google Scholar 

  • Ohba M (1975) Studies on the pathogenesis of Chilo iridescent virus. 3. Multiplication of CIV in the silkworm Bombyx mori L. and field insects. Sci Bull Fac Agr Kyushu Univ 30:71–81

    Google Scholar 

  • Ohba M, Aizawa K (1979) Multiplication of Chilo iridescent virus in noninsect arthropods. J Invertebr Pathol 33:278–283

    Google Scholar 

  • Ohba M, Aizawa K (1982) Failure of Chilo iridescent virus to replicate in the frog Rana limno-charis (in Japanese). Proc Assoc Plant Protec Kyushu 28:164–166

    Google Scholar 

  • Oliveros M, Garcia-Escudero R, Alejo A, Vinuela E, Salas ML, Salas J (1999) African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macro-phages. J Virol 73:8934–8943

    PubMed  CAS  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haa F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl) transferases (pARTs). BMC Genomics 6:139

    PubMed  Google Scholar 

  • Overholtzer M, Mailleaux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979

    PubMed  CAS  Google Scholar 

  • Pallister J, Goldie S, Coupar B, Hyatt A (2005) Promoter activity in the 5′ flanking regions of the Bohle iridovirus ICP18, ICP46 and major capsid protein genes. Arch Virol 150:1911–1919

    PubMed  CAS  Google Scholar 

  • Pallister J, Goldie S, Coupar B, Shiell B, Michalski WP, Siddon N, and Hyatt A (2007) Bohle iri-dovirus as a vector for heterologous gene expression. J Virol Methods 146:419–423

    PubMed  CAS  Google Scholar 

  • Pallister J, Gould A, Harrison D, Hyatt A, Jancovich J, Heine H (2007) Development of real-time PCR assays for the detection and differentiation of Australian and European ranaviruses. J Fish Dis 30:427–438

    PubMed  CAS  Google Scholar 

  • Paul ER, Chitnis NS, Henderson CW, Kaul RJ, D'Costa SM, Bilimoria SL (2007) Induction of apoptosis by iridovirus virion protein extract. Arch Virol 152:1353–1364

    PubMed  CAS  Google Scholar 

  • Paperna I, Vilenkin M, Alves de Matos AP (2001) Iridovirus infections in farm-reared tropical ornamental fish. Dis Aquat Org 48:17–25

    PubMed  CAS  Google Scholar 

  • Pearman PB, Garner TWJ (2005) Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol Lett 8:401–408

    Google Scholar 

  • Pearman PB, Garner TWJ, Straub M, Greber UF (2004) Response of the Italian agile frog ( Rana latastei ) to a ranavirus, frog virus 3: a model for vial emergence in naïve populations. J Wildlife Dis 40:660–669

    Google Scholar 

  • Picco AM, Brunner JL, Collins JP (2007) Susceptibility of the endangered California tiger salamanderAmbystoma californiense, to ranavirus infection. J Wildlife Dis 43:286–290

    Google Scholar 

  • Pierce BE, Phillips PH, Jackson G (1991) Redfin virus (EHN) fish disease confirmed in South Australia. SA Fish 15:5–7

    Google Scholar 

  • Pietrokovski S (1998) Identification of a virus intein and a possible variation in the protein-splicing reaction. Curr Biol 8:R634–R635

    PubMed  CAS  Google Scholar 

  • Pozet F, Moussa A, Torhy C, de Kinkelin P (1992) Isolation and preliminary characterization of a pathogenic icosahedral deoxyribovirus from the catfish Ictalurus melas. Dis Aquat Org 14:35–42

    Google Scholar 

  • Radloff C, Juhl S, Vaia RA, Brunton J, Ward V, Kalmakoff J, Dokland T, Ha YH, Tomas EL (2005a) Bio-scaffolds for ordered nanostructures and metallodielectric nanoparticles. In: Lai WYC, Pau S, López OD (eds) Nanofabrication: technologies, devices and applications. Proc SPIE 5592:143–152

    CAS  Google Scholar 

  • Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005b) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191

    CAS  Google Scholar 

  • Raghow R, Granoff A (1979) Macromolecular synthesis in cells infected with frog virus 3. X. Inhibition of cell protein synthesis by heat-inactivated frog virus 3. Virology 98:319–327

    PubMed  CAS  Google Scholar 

  • Raghow R, Granoff A (1983) Cell-free translation of FV3 mRNA: initiation factors from infected cells discriminate between early and late viral mRNAs. J Biol Chem 258:571–578

    PubMed  CAS  Google Scholar 

  • Reading PC, Moore JB, Smith GL (2003) Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278

    PubMed  CAS  Google Scholar 

  • Reddacliff LA, Whittington RJ (1996) Pathology of epizootic haematopoietic necrosis virus (EHNV) infection in rainbow trout ( Oncorhynchus mykiss Walbaum) and redfin perch ( Perca fluviatilis L). J Compar Pathol 115:103–115

    CAS  Google Scholar 

  • Reyes A, Christian P, Valle J, Williams T (2004) Persistence of Invertebrate iridescent virus 6 in soil. BioContr 49:433–440

    Google Scholar 

  • Ricou G (1975) Production de Tipula paludosa Meig en prairie en fonction de l'humidité du sol. Rev Ecol Biol Sol 12:69–89

    Google Scholar 

  • Robert J, Morales H, Buck W, Cohen N, Marr S, Gantress J (2005) Adaptive immunity and his-topathology in frog virus 3-infected Xenopus. Virology 332:667–675

    PubMed  CAS  Google Scholar 

  • Rodger H D, Kobs M, Macarthney A, Frerichs GN (1997) Systemic iridovirus infection in freshwater angelfishPterophyllum scalare (Lichtenstein). J Fish Dis 20:69–72

    Google Scholar 

  • Rojas S, Richards K, Jancovich JK, Davidson EW (2005) Influence of temperature on ranavirus infection in larval salamanders Ambystoma tigrinum. Dis Aquat Org 28:95–100

    Google Scholar 

  • Sample RC, Bryan L, Long S, Majji S, Hoskins G, Sinning A, Chinchar VG (2007) Inhibition of protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate early protein, and a viral homologue of RNA polymerase II. Virology 358:311–320

    PubMed  CAS  Google Scholar 

  • Schackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucle-otide composition bias in vertebrate viruses. J Mol Evol 62:551–563

    Google Scholar 

  • Schock DM, Bollinger TK, Chinchar VG, Jancovich JK, Collins JP (2008) Experimental evidence that amphibian ranaviruses are multihost pathogens. Copeia 133–143

    Google Scholar 

  • Sieburth PJ, Carner GR (1987) Infectivity of an iridescent virus for larvae of Anticarsia gemmata-lis (Lepidoptera: Noctuidae). J Invertebr Pathol 49:49–53

    Google Scholar 

  • Sikorowski PP, Tyson GE (1984) Per os transmission of iridescent virus of Helothis zea (Lepidoptera: Noctuidae). J Invertebr Pathol 44:97–102

    Google Scholar 

  • Speare R, Smith JR (1992) An iridovirus-like agent isolated from the ornate burrowing frog Limnodynsastes ornatus in northern Australia. Dis Aquat Org 14:51–57

    Google Scholar 

  • Song WJ, Qin QW, Qiu J, Huang CH, Wang F, Hew CL (2004) Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J Virol 78:12576–12590

    PubMed  CAS  Google Scholar 

  • Stasiak K, Demattei MV, Federici BA, Bigot Y (2000) Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. J Gen Virol 81:3059–3072

    PubMed  CAS  Google Scholar 

  • Stasiak K, Renault S, Demattei M V, Bigot Y, Federici BA (2003) Evidence for the evolution of ascoviruses from iridoviruses. J Gen Virol 84:2999–3009

    PubMed  CAS  Google Scholar 

  • Stoltz DB (1971) The structure of icosahedral cytoplasmic deoxyriboviruses. J Ultrastruc Res 37:219–239

    CAS  Google Scholar 

  • Stoltz DB (1973) The structure of icosahedral cytoplasmic deoxyriboviruses II. An alternative model. J Ultrastruc Res 43:58–74

    CAS  Google Scholar 

  • Stoltz DB, Hilsenhoff WL, Stich HF (1968) A virus disease ofChironomus plumosus. J Invertebr Pathol 12:118–126

    Google Scholar 

  • Storfer A, Alfaro ME, Ridenhour BJ, Jancovich JK, Mech SG, Parris MJ, Collins JP (2007) Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecol Lett 10:1075–1083

    PubMed  Google Scholar 

  • Sudthongkong C, Miyata M, Miyazaki T (2001) Iridovirus disease in two ornamental tropical freshwater fishes: African lampeye and dwarf gourami. Dis Aquat Org 48:163–173

    Google Scholar 

  • Sudthongkong C, Miyata M, Miyazaki T (2002) Viral DNA sequences of genes encoding the ATPase and the major capsid protein of tropical iridovirus isolates which are pathogenic to fishes in Japan, South China Sea, and Southeast Asian countries. Arch Virol 147:2089–2109

    PubMed  CAS  Google Scholar 

  • Sun W, Huang Y, Zhao Z, Gui JF, Zhang Q (2006) Characterization of theRana gryliovirus β-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect. Biochem Biophysic Res Comm 351:44–50

    CAS  Google Scholar 

  • Tan S-L, Katze MG (1999) The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: A new face of death? J Interferon Cytokine Res 19:543–554

    PubMed  CAS  Google Scholar 

  • Tan WGH, Barkman TJ, Chinchar VG, Essani K (2004) Comparative genomic analysis of frog virus 3, type species of the genusRanavirus(familyIridoviridae). Virology 323:70–84

    PubMed  CAS  Google Scholar 

  • Tanaka H, Sato K, Saito Y, Yamashita T, Agoh M, Okunishi J, Tachikawa E, Suzuki K (2003) Insect diapause-specific peptide from the leaf beetle has consensus with a putative iridovirus peptide. Peptides 24:1327–1333

    PubMed  CAS  Google Scholar 

  • Tang KFJ, Redman RM, Pantoja CR, LeGroumellec M, Duraisamy P, Lightner DV (2007) Identification of an iridovirus inAcetes erythraeus(Sergestidae) and the development ofin situhybridization and PCR methods for its detection. J Invert Pathol 96:255–260

    CAS  Google Scholar 

  • Tapiovaara H, Olesen NJ, Linden J, Rimaila-Parnanen E, von Bonsdorff CH (1998) Isolation of an iridovirus from pike-perchStizostedion lucioperca. Dis Aquat Org 32:185–193

    PubMed  CAS  Google Scholar 

  • Tidona CA, Darai G (1997) The complete DNA sequence of lymphocystis disease virus. Virology 230:207–216

    PubMed  CAS  Google Scholar 

  • Tonka T, Weiser J (2000) Iridovirus infection in mayfly larvae. J Invertebr Pathol 76:229–231

    PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18: 861–926

    PubMed  CAS  Google Scholar 

  • Tsai CT, Lin CH, Chang CY (2007) Analysis of codon usage bias and base compositional constraints in iridovirus genomes. Virus Res 126:196–206

    PubMed  CAS  Google Scholar 

  • Tweedel K, Granoff A (1968) Viruses and renal carcinoma ofRana pipiens. V. Effect of frog virus 3 on developing frog embryos and larvae. J Natl Cancer Inst 40:407–409

    Google Scholar 

  • Undeen AH, Fukuda T (1994) Effects of host resistance and injury on the susceptibility ofAedes taeniorhynchusto mosquito iridescent virus. J Am Mosq Contr Assoc 10:64–66

    CAS  Google Scholar 

  • Vetten HJ, Haenni A-L (2006) Taxon-specific suffixes for vernacular names. Arch Virol 151:1249–1250

    PubMed  CAS  Google Scholar 

  • Wang YQ, Lu L, Weng SP, Huang JN, Chan SM, He JG (2007) Molecular epidemiology and phy-logenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like (ISKNV-like) virus. Arch Virol 152:763–773

    PubMed  CAS  Google Scholar 

  • Ward VK, Kalmakoff J (1991) Invertebrate Iridoviridae. In: Kurstak E (ed) Viruses of invertebrates, Marcel Dekker, New York, pp 197–226

    Google Scholar 

  • Watson LR, Groff JM, Hedrick RP (1998) Replication and pathogenesis of white sturgeon irido-virus (WSIV) in experimentally infected white sturgeonAcipenser transmontanusjuveniles and sturgeon cell lines. Dis Aquat Org 32:173–184

    PubMed  CAS  Google Scholar 

  • Webby R, Kalmakoff J (1998) Sequence comparison of the major capsid protein gene from 18 diverse iridoviruses. Arch Virol 143:1949–1966

    PubMed  CAS  Google Scholar 

  • Weissenberg R (1965) Fifty years of research on the lymphocystis virus disease of fishes (1914–1964). Ann N Y Acad Sci 126:362–374

    PubMed  CAS  Google Scholar 

  • Werts C, Girardin SE, Philpott DJ (2006) TIR, CARD, and PYRIN: three domains for an antimicrobial triad. Cell Death Differen 13:798–815

    CAS  Google Scholar 

  • Whittington RJ, Reddacliff GL (1995) Influence of environmental temperature on experimental infection of redfin perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss) with epizootic haematopoietic necrosis virus, an Australian iridovirus. Aust Vet J 11:421–424

    Google Scholar 

  • Whittington RJ, Philbey A, Reddacliff GL, Macgowan AR (1994) Epidemiology of epizootic haematopoietic necrosis virus (EHNV) infection in farmed rainbow trout,Oncorhynchus mykiss(Walbaum): findings based on virus isolation, antigen capture ELISA and serology. J Fish Dis 17:205–218

    Google Scholar 

  • Whittington RJ, Kearns C, Hyatt AD, Hengstberger S, Rutzou T (1996) Spread of epizootic haematopoietic necrosis virus (EHNV) in redfin perch (Perca fluviatilis) in southern Australia. Aust Vet J 73:112–114

    PubMed  CAS  Google Scholar 

  • Wileman T (2006) Aggresomes and autophagy generate sites for virus replication. Science 312:875–878

    PubMed  CAS  Google Scholar 

  • Williams BRG (1999) PKR: a sentinel kinase for cellular stress. Oncogene 18:6112–6120

    PubMed  CAS  Google Scholar 

  • Williams T (1993) Covert iridovirus infection of blackfly larvae. Proc R Soc B 251:225–230

    Google Scholar 

  • Williams T (1996) The iridoviruses. Adv Virus Res 46:347–412

    Google Scholar 

  • Williams T (1998) Invertebrate iridescent viruses. In: Miller LK, Ball LA (eds) The insect viruses, Plenum, New York, pp 31–68

    Google Scholar 

  • Williams T, Cory JS (1994) Proposals for a new classification of iridescent viruses. J Gen Virol 75:1291–1301

    PubMed  CAS  Google Scholar 

  • Williams T, Hernández O (2006) Costs of cannibalism in the presence of an iridovirus pathogen ofSpodoptera frugiperda. Ecol Entomol 31:106–113

    Google Scholar 

  • Williams T, Barbosa-Solomieu V, Chinchar VG (2005) A decade of advances in iridovirus research. Adv Virus Res 65:173–248

    PubMed  CAS  Google Scholar 

  • Willis DB, Granoff A (1978) Macromolecular synthesis in cells infected by frog virus 3. IX. Two temporal classes of early viral RNA. Virology 86:443–453

    PubMed  CAS  Google Scholar 

  • Willis DB, Granoff A (1980) Frog virus 3 DNA is heavily methylated at CpG sequences. Virology 107:250–257

    PubMed  CAS  Google Scholar 

  • Willis DB, Granoff A (1985) Trans-activation of an immediate-early frog virus 3 promoter by a virion protein. J Virol 56:495–501

    PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Granoff A (1984) DNA methyltransferase induced by frog virus 3. J Virol 49:86–91

    PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Chinchar VG (1985) Macromolecular synthesis in cells infected by frog virus 3. Curr Topics Microbiol Immunol 116:77–106

    CAS  Google Scholar 

  • Willis DB, Thompson JP, Essani K, Goorha R (1989) Transcription of methylated viral DNA by eukaryotic RNA polymerase II. Cell Biophys 15:97–111

    PubMed  CAS  Google Scholar 

  • Willis DB, Essani K, Goorha R, Thompson JP, Granoff A (1990a) Transcription of a methylated DNA virus. Nucleic Acid Methylation. UCLA Symp Mol Cell Biol 128:139–151

    CAS  Google Scholar 

  • Willis DB, Thompson JP, Beckman W (1990b) Transcription of frog virus 3. In: Darai G (ed) Molecular biology of iridoviruses, Kluwer, Boston, pp 173–186

    Google Scholar 

  • Wolf K (1988) Fish viruses and fish viral diseases. Cornell University Press, Ithaca.

    Google Scholar 

  • Wrigley NG (1969) An electron microscope study of the structure ofSericesthisiridescent virus. J Gen Virol 5:123–134

    PubMed  CAS  Google Scholar 

  • Wrigley NG (1970) An electron microscope study of the structure ofTipulairidescent virus. J Gen Virol 6:169–173

    PubMed  CAS  Google Scholar 

  • Xie J, Lu L, Deng M, Weng S, Zhu J, Wu Y, Gan L, Chan S-M, He J (2005) Inhibition of reporter gene and Iridovirus-tiger frog virus in fish cell by RNA interference. Virology 338:43–52

    PubMed  CAS  Google Scholar 

  • Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS (2000) Structure and assembly of large lipid-containing dsDNA viruses. Nature Struct Mol Biol 7:101–103

    CAS  Google Scholar 

  • Younghusband HB, Lee PE (1969) Virus-cell studies ofTipulairidescent virus inGalleria mellonella(L.). I. Electron microscopy of infection and synthesis ofTipulairidescent virus in hemocytes. Virology 38:247–254

    PubMed  CAS  Google Scholar 

  • Zemskov EA, Kang W, Maeda S (2000) Evidence for nucleic acid binding ability and nucleosome association ofBombyx morinucleopolyhedrovirus BRO proteins. J Virol 74:6784–6789

    PubMed  CAS  Google Scholar 

  • Zhang QY, Xiao F, Li ZQ, Gui JF, Mao J, Chinchar VG (2001) Characterization of an iridovirus from the cultured pig frog (Rana grylio) with lethal syndrome. Dis Aquat Org 48:27–36

    CAS  Google Scholar 

  • Zhang Q Y, Xiao F, Xie J, Li ZQ, Gui JF (2004) Complete genome sequence of lymphocystis disease virus isolated from China. J Virol 78:6982–6994

    PubMed  CAS  Google Scholar 

  • Zhang Q Y, Zhao Z, Xiao F, Li ZQ, Gui JF (2006) Molecular characterization of threeRana gryliovirus (RGV) isolates andParalichthys olivaceuslymphocystis disease virus (LCDV-C) in iridoviruses. Aquaculture 251:1–10

    CAS  Google Scholar 

  • Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, Van Etten JL (2007) Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J Virol 81:7662–7671

    PubMed  CAS  Google Scholar 

  • Zhao Z, Ke F, Gui JF, Zhang Q (2007) Characterization of an early gene encoding for dUTPase inRana gryliovirus. Virus Res 123:128–137

    PubMed  CAS  Google Scholar 

  • Zheng FR, Sun XQ, Liu HZ, Zhang JX (2006) Study on the distribution and expression of a DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 261:1128–1134

    CAS  Google Scholar 

  • Zupanovic Z, Lopez G, Hyatt A, Shiell BJ, Robinson AJ (1998a) An improved enzyme linked immunosorbent assay for detection of anti-ranavirus antibodies in the serum of the giant toad (Bufo marinus). Dev Comp Immunol 22:573–585

    CAS  Google Scholar 

  • Zupanovic Z, Musso C, Lopez C, Louriero CL, Hyatt AD, Hengstberger S, Robinson AJ (1998b) Isolation and characterization of iridoviruses from the giant toadBufo marinusin Venezuela. Dis Aquat Org 33:1–9

    CAS  Google Scholar 

  • Zwillenberg LO, Wolf K (1968) Ultrastructure of lymphocystis virus. J Virol 2:393–399

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Chinchar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chinchar, V.G., Hyatt, A., Miyazaki, T., Williams, T. (2009). Family Iridoviridae: Poor Viral Relations No Longer. In: Van Etten, J.L. (eds) Lesser Known Large dsDNA Viruses. Current Topics in Microbiology and Immunology, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68618-7_4

Download citation

Publish with us

Policies and ethics