Skip to main content

In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 192))

Abstract

While most cigarette smokers endorse a desire to quit smoking, only 14–49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may result in improved pharmacological and behavioral interventions for this condition. Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this chapter is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine ox-idase (MAO) A and B activity in the basal ganglia and a reduction in α4β2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors). These findings indicate that smoking enhances neurotransmission through cortico–basal ganglia–thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in attentional performance, mood, anxiety, and irritability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85: 119–146

    PubMed  CAS  Google Scholar 

  • Bahk JY, Li SP, Park MS, Kim MO (2002) Dopamine D-1 and D-2 receptor mRNA up-regulation in the caudate-putamen and nucleus accumbens of rat brains by smoking. Prog Neuropsychophar-macol Biol Psychiatry 26:1095–1104

    CAS  Google Scholar 

  • Baker RR, Massey ED, Smith G (2004) An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol 42(Suppl):S53–S83

    PubMed  CAS  Google Scholar 

  • Balluz L, Ahluwalia IB, Murphy W, Mokdad A, Giles W, Harris VB (2004) Surveillance for certain health behaviors among selected local areas–United States, Behavioral Risk Factor Surveillance System, 2002. MMWR Surveill Summ 53:1–100

    PubMed  Google Scholar 

  • Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A (2004) The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 54:65–71

    PubMed  CAS  Google Scholar 

  • Bartal M (2001) Health effects of tobacco use and exposure. Monaldi Arch Chest Dis 56:545–554

    PubMed  CAS  Google Scholar 

  • Bell SL, Taylor RC, Singleton EG, Henningfield JE, Heishman SJ (1999) Smoking after nicotine deprivation enhances cognitive performance and decreases tobacco craving in drug abusers. Nicotine Tob Res 1:45–52

    PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJK, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    PubMed  CAS  Google Scholar 

  • Berlin I, Anthenelli RM (2001) Monoamine oxidases and tobacco smoking. Int J Neuropsy-chopharmacol 4:33–42

    CAS  Google Scholar 

  • Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmen-tal area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–722

    PubMed  CAS  Google Scholar 

  • Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282:7–13

    PubMed  CAS  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Childress AR, Bota RG, Ho ML, Lee GS, Saxena S, Baxter LR, Madsen D, Jarvik ME (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59:1162–1172

    PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, Lee G, Smith E, Sadeghi M, Saxena S, Jarvik ME, London ED (2004a) Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psych Res Neuroimaging 130:269–281

    Google Scholar 

  • Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA (2004b) Smoking-induced ventral striatum dopamine release. Am J Psychiatry 161:1211–1218

    Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    PubMed  CAS  Google Scholar 

  • Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E, Allen V, Scheibal D, London ED, Monterosso JR, Tiffany ST, Korb A, Gan JJ, Cohen MS (2007) Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry 62:642–651

    PubMed  CAS  Google Scholar 

  • Broussolle EP, Wong D, Fanelli RJ, London ED (1989) In vivo specific binding of [3H]-nicotine in the mouse brain. Life Sci 44:1123–1132

    PubMed  CAS  Google Scholar 

  • Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    PubMed  CAS  Google Scholar 

  • Carter CS, Botvinick MM, Cohen JD (1999) The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci 10:49–57

    PubMed  CAS  Google Scholar 

  • Chefer SI, Horti AG, Lee K, Koren A, Jones DW, Gorey J, Links JM, Mukhin AG, Weinberger DR, London ED (1998) In vivo imaging of brain nicotinic receptors with 5-[123I]iodo-A-85380 using single photon emission computed tomography. Life Sci 63:PL355–PL360

    PubMed  CAS  Google Scholar 

  • Chefer SI, Horti AG, Koren AO, Gündrisch D, Links JM, Kurian V, Dannals RF, Mukhin AG, London ED (1999) 2-[18F]F-A-83580: a PET radioligand for α4β2 nicotinic acetylcholine receptors. Neuroreport 10:2715–2721

    PubMed  CAS  Google Scholar 

  • Chefer SI, London ED, Koren AO, Pavlova OA, Kurian V, Kimes AS, Horti AG, Mukhin AG (2003) Graphical analysis of 2-[F-18]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 48:25–34

    PubMed  CAS  Google Scholar 

  • Chua P, Krams M, Toni I, Passingham R, Dolan R (1999) A functional anatomy of anticipatory anxiety. Neuroimage 9:563–571

    PubMed  CAS  Google Scholar 

  • Cimino M, Marini P, Fornasari D, Cattabeni F, Clementi F (1992) Distribution of nicotinic receptors in cynomolgus monkey brain and ganglia: localization of alpha 3 subunit mRNA, alpha-bungarotoxin and nicotine binding sites. Neuroscience 51:77–86

    PubMed  CAS  Google Scholar 

  • Clarke PBS (2004) Nicotinic modulation of thalamocortical neurotransmission. Acetylcholine in the cerebral cortex. Prog Brain Res 145:253–260

    PubMed  CAS  Google Scholar 

  • Clarke PBS, Pert C, Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Res 323:390–395

    PubMed  CAS  Google Scholar 

  • Cohen C, Pickworth WB, Henningfield JE (1991) Cigarette smoking and addiction. Clin Chest Med 12:701–710

    PubMed  CAS  Google Scholar 

  • Connelly MS, Littleton JM (1983) Lack of stereoselectivity in ability of nicotine to release dopamine from rat synaptosomal preparations. J Neurochem 41:1297–1302

    PubMed  CAS  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–289

    PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    PubMed  CAS  Google Scholar 

  • Court JA, Martin-Ruiz C, Graham A, Perry E (2000) Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 20:281–298

    PubMed  CAS  Google Scholar 

  • Cousins MS, Roberts DC, de Wit H (2002) GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend 65:209–220

    PubMed  CAS  Google Scholar 

  • Critchley HD, Mathias CJ, Dolan RJ (2001) Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuroimage 13:S392

    Google Scholar 

  • Cruickshank JM, Neildwyer G, Dorrance DE, Hayes Y, Patel S (1989) Acute effects of smoking on blood-pressure and cerebral blood-flow. J Hum Hypertension 3:443–449

    CAS  Google Scholar 

  • Dagher A, Bleicher C, Aston JAD, Gunn RN, Clarke PBS, Cumming P (2001) Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 42:48–53

    PubMed  CAS  Google Scholar 

  • Damsma G, Day J, Fibiger HC (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168:363–368

    PubMed  CAS  Google Scholar 

  • Dávila-García MI, Musachio J, Perry D, Xiao Y, Horti A, London E, Dannals RF, Kellar K (1997) [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J Pharmacol Exp Ther 282:445–451

    PubMed  Google Scholar 

  • Davila-Garcia MI, Houghtling RA, Qasba SS, Kellar KJ (1999) Nicotinic receptor binding sites in rat primary neuronal cells in culture: characterization and their regulation by chronic nicotine. Mol Brain Res 66:14–23

    PubMed  CAS  Google Scholar 

  • Dewey SL, Brodie JD, Gerasimov M, Horan B, Gardner EL, Ashby CRJ (1999) A pharmacologic strategy for the treatment of nicotine addiction. Synapse 31:76–86

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  Google Scholar 

  • Ding YS, Volkow ND, Logan J, Garza V, Pappas N, King P, Fowler JS (2000) Occupancy of brain nicotinic acetylcholine receptors by nicotine doses equivalent to those obtained when smoking a cigarette. Synapse 35: 234–237

    PubMed  CAS  Google Scholar 

  • Domino EF, Minoshima S, Guthrie S, Ohl L, Ni L, Koeppe RA, Zubieta JK (2000a) Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers. Synapse 38: 313–321

    CAS  Google Scholar 

  • Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, Cross DJ, Zubieta J (2000b) Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience 101:277–282

    CAS  Google Scholar 

  • Drevets WC, Price JL, Simpson JR, Jr., Todd RD, Reich T, Vannier M, Raichle ME (1997) Sub-genual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827

    PubMed  CAS  Google Scholar 

  • Due DL, Huettel SA, Hall WG, Rubin DC (2002) Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry 159:954–960

    PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    PubMed  CAS  Google Scholar 

  • Ernst M, Heishman SJ, Spurgeon L, London ED (2001a) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319

    CAS  Google Scholar 

  • Ernst M, Matochik JA, Heishman SJ, Van Horn JD, Jons PH, Henningfield JE, London ED (2001b) Effect of nicotine on brain activation during performance of a working memory task. Proc Natl Acad Sci USA 98:4728–4733

    CAS  Google Scholar 

  • Fallon JH, Keator DB, Mbogori J, Turner J, Potkin SG (2004) Hostility differentiates the brain metabolic effects of nicotine. Brain Res Cogn Brain Res 18:142–148

    PubMed  CAS  Google Scholar 

  • Fiore MC, Bailey WC, Cohen SJ, Dorfman SF, Goldstein MG, Gritz ER, Heyman RB, Jaen CR, Kottke TE, Lando HA, Mecklenburg RE, Mullen PD, Nett LM, Robinson L, Stitzer ML, Tommasello AC, Villejo L, Wewers ME (2000) Treating tobacco use and dependence. Clinical Practice Guideline, U.S. Department of Health and Human Services. Public Health Service, Rockville, MD

    Google Scholar 

  • Fowler JS, Volkow ND, Logan J, Wang GJ, MacGregor RR, Schyler D, Wolf AP, Pappas N, Alexoff D, Shea C (1994) Slow recovery of human brain MAO B after L-deprenyl (Selege-line) withdrawal. Synapse 18:86–93

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer D, Wolf AP, Warner D, Zezulkova I, Cilento R (1996a) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP (1996b) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 93:14065–14069

    CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J, Pappas N, King P, MacGregor R, Shea C, Garza V, Gatley SJ (1998a) An acute dose of nicotine does not inhibit MAO B in baboon brain in vivo. Life Sci 63:L19–L23

    Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Wolf AP, Warner D, Cilento R, Zezulkova I (1998b) Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 17:23–34

    CAS  Google Scholar 

  • Fowler JS, Wang GJ, Volkow ND, Franceschi D, Logan J, Pappas N, Shea C, MacGregor RR, Garza V (1999) Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non-smokers. Nicotine Tob Res 1:325–329

    PubMed  CAS  Google Scholar 

  • Fowler JS, Wang GJ, Volkow ND, Franceschi D, Logan J, Pappas N, Shea C, MacGregor RR, Garza V (2000) Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 157:1864–1866

    PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND (2003a) Monoamine oxidase and cigarette smoking. Neurotoxicology 24:75–82

    CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Zhu W, Franceschi D, Pappas N, Ferrieri R, Shea C, Garza V, Xu YW, Schlyer D, Gatley SJ, Ding YS, Alexoff D, Warner D, Netusil N, Carter P, Jayne M, King P, Vaska P (2003b) Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci USA 100:11600–11605

    CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Zhu W, Franceschi D, Shea C, Garza V, Xu Y, Ding YS, Alexoff D, Warner D, Netusil N, Carter P, Jayne M, King P, Vaska P (2005) Comparison of monoamine oxidase a in peripheral organs in nonsmokers and smokers. J Nucl Med 46:1414–1420

    PubMed  CAS  Google Scholar 

  • Fowles J, Dybing E (2003) Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control 12:424–430

    PubMed  CAS  Google Scholar 

  • Fujita M, Seibyl JP, Vaupel DB, Tamagnan G, Early M, Zoghbi SS, Baldwin RM, Horti AG, Koren AO, Mukhin AG, Khan S, Bozkurt A, Kimes AS, London ED, Innis RB (2002) Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123I]5-I-A-85380 in healthy human subjects. Eur J Nucl Med Mol Imaging 29:183–190

    PubMed  CAS  Google Scholar 

  • Fujita M, Ichise M, van Dyck CH, Zoghbi SS, Tamagnan G, Mukhin AG, Bozkurt A, Seneca N, Tipre D, DeNucci CC, Iida H, Vaupel DB, Horti AG, Koren AO, Kimes AS, London ED, Seibyl JP, Baldwin RM, Innis RB (2003) Quantification of nicotinic acetylcholine receptors in human brain using [I-123]5-I-A-85380 SPET. Eur J Nucl Med Mol Imaging 30:1620–1629

    PubMed  CAS  Google Scholar 

  • Ghatan PH, Ingvar M, Eriksson L, Stone-Elander S, Serrander M, Ekberg K, Wahren J (1998) Cerebral effects of nicotine during cognition in smokers and non-smokers. Psychopharmacology 136:179–189

    PubMed  CAS  Google Scholar 

  • Gioanni Y, Rougeot C, Clarke PB, Lepouse C, Thierry AM, Vidal C (1999) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11:18–30

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 86: 9015–9019

    PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neu-roimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    PubMed  Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJAJ (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neu-roanat 16:167–185

    CAS  Google Scholar 

  • Gross TM, Jarvik ME, Rosenblatt MR (1993) Nicotine abstinence produces content-specific Stroop interference. Psychopharmacology 110:333–336

    PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11:323–342

    PubMed  CAS  Google Scholar 

  • Hatsukami D, Fletcher L, Morgan S, Keenan R, Amble P (1989) The effects of varying cigarette deprivation duration on cognitive and performance tasks. J Subst Abuse 1:407–416

    PubMed  CAS  Google Scholar 

  • Herrero MT, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nervous Syst 18:386–404

    Google Scholar 

  • Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    PubMed  CAS  Google Scholar 

  • Holmes S, Zwar N, Jimenez-Ruiz CA, Ryan PJ, Browning D, Bergmann L, Johnston JA (2004) Bupropion as an aid to smoking cessation: a review of real-life effectiveness. Int J Clin Pract 58:285–291

    PubMed  CAS  Google Scholar 

  • Horti AG, Scheffel U, Koren AO, Ravert HT, Mathews WB, Musachio JL, Finley PA, London ED, Dannals RF (1998) 2-[F-18]fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nucl Med Biol 25:599–603

    PubMed  CAS  Google Scholar 

  • Horti AG, Koren AO, Lee KS, Mukhin AG, Vaupel DB, Kimes AS, Stratton M, London ED (1999) Radiosynthesis and preliminary evaluation of 5-[123/125I]iodo-3-(2(S)-azetidinylmethoxy)pyridine: a radioligand for nicotinic acetylcholine receptors. Nucl Med Biol 26:175–182

    PubMed  CAS  Google Scholar 

  • Horti AG, Villemagne, VL (2006) The quest for Eldorado: development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Des 12:3877–3900

    PubMed  CAS  Google Scholar 

  • Hughes JR, Lesmes GR, Hatsukami DK, Richmond RL, Lichtenstein E, Jorenby DE, Broughton JO, Fortmann SP, Leischow SJ, McKenna JP, et al (1999) Are higher doses of nicotine replacement more effective for smoking cessation? Nic Tobacco Res 1:169–174

    CAS  Google Scholar 

  • Hurt RD, Sachs DP, Glover ED, Offord KP, Johnston JA, Dale LC, Khayrallah MA, Schroeder DR, Glover PN, Sullivan CR, Croghan IT, Sullivan PM (1997) A comparison of sustained-release bupropion and placebo for smoking cessation. NEJM 337:1195–1202

    PubMed  CAS  Google Scholar 

  • Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH (2002) Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging 20: 141–145

    PubMed  CAS  Google Scholar 

  • Jacobsen LK, D'Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55:850–858

    PubMed  CAS  Google Scholar 

  • Jarvik ME, Madsen DC, Olmstead RE, Iwamoto-Schaap PN, Elins JL, Benowitz NL (2000) Nicotine blood levels and subjective craving for cigarettes. Pharmacol Biochem Behav 66:553–558

    PubMed  CAS  Google Scholar 

  • Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, Smith SS, Muramoto ML, Daughton DM, Doan K, Fiore MC, Baker TB (1999) A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. NEJM 340:685–691

    PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    PubMed  CAS  Google Scholar 

  • Killen JD, Fortmann SP, Davis L, Strausberg L, Varady A (1999) Do heavy smokers benefit from higher dose nicotine patch therapy? Exp Clin Psychopharm 7:226–233

    CAS  Google Scholar 

  • Killen JD, Fortmann SP, Schatzberg AF, Hayward C, Sussman L, Rothman M, Strausberg L, Varady A (2000) Nicotine patch and paroxetine for smoking cessation. J Consult Clin Psych 68:883–889

    CAS  Google Scholar 

  • Kimbrell TA, George MS, Parekh PI, Ketter TA, Podell DM, Danielson AL, Repella JD, Benson BE, Willis MW, Herscovitch P, Post RM (1999) Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biol Psychiatry 46:454–465

    PubMed  CAS  Google Scholar 

  • Kimes AS, Horti AG, London ED, Chefer SI, Contoreggi C, Ernst M, Friello P, Koren AO, Kurian V, Matochik JA, Pavlova O, Vaupel DB, Mukhin AG (2003) 2-[18F]F-A-85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J 17:1331–1333

    PubMed  CAS  Google Scholar 

  • Klimek V, Zhu MY, Dilley G, Konick L, Overholser JC, Meltzer HY, May WL, Stockmeier CA, Ordway GA (2001) Effects of long-term cigarette smoking on the human locus coeruleus. Arch Gen Psychiatry 58:821–827

    PubMed  CAS  Google Scholar 

  • Kodaira K, Fujishiro K, Wada T, Maie K, Satoi T, Tsukiyama E, Fukumoto T, Uchida T, Yamazaki S, Okamura T (1993) A study on cerebral nicotine receptor distribution, blood flow, oxygen consumption, and other metabolic activities–a study on the effects of smoking on carotid and cerebral artery blood flow. Yakubutsu Seishin Kodo 13:157–165

    PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharm Sci 13:177–184

    PubMed  CAS  Google Scholar 

  • Koren AO, Horti AG, Mukhin AG, Gundisch D, Kimes AS, Dannals RF, London ED (1998) 2-, 5-, and 6-halo-3-(2(S)-azetidinylmethoxy)pyridines: synthesis, affinity for nicotinic acetylcholine receptors, and molecular modeling. J Med Chem 41:3690–3698

    PubMed  CAS  Google Scholar 

  • Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K, Ackenheil M (2002) Stimulant-like action of nicotine on striatal dopamine transporter in the brain of adults with attention deficit hyper-activity disorder. Int J Neuropsychopharmacol 5:111–113

    PubMed  CAS  Google Scholar 

  • Kubota K, Yamaguchi T, Abe Y, Fujiwara T, Hatazawa J, Matsuzawa T (1983) Effects of smoking on regional cerebral blood-flow in neurologically normal subjects. Stroke 14:720–724

    PubMed  CAS  Google Scholar 

  • Kubota K, Yamaguchi T, Fujiwara T, Matsuzawa T (1987) Effects of smoking on regional cerebral blood-flow in cerebral vascular-disease patients and normal subjects. Tohoku J Exp Med 151:261–268

    PubMed  CAS  Google Scholar 

  • Kumari V, Gray JA, Ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SCR, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013

    PubMed  Google Scholar 

  • Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thala-mocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216–225

    PubMed  CAS  Google Scholar 

  • Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

    PubMed  CAS  Google Scholar 

  • Leistikow BN, Martin DC, Milano CE (2000a) Estimates of smoking-attributable deaths at ages 15–54, motherless or fatherless youths, and resulting Social Security costs in the United States in 1994. Prev Med 30:353–360

    CAS  Google Scholar 

  • Leistikow BN, Martin DC, Milano CE (2000b) Fire injuries, disasters, and costs from cigarettes and cigarette lights: a global overview. Prev Med 31:91–99

    CAS  Google Scholar 

  • Leshner AI, Koob GF (1999) Drugs of abuse and the brain. Proc Assoc Am Phys 111:99–108

    PubMed  CAS  Google Scholar 

  • Li SP, Kim KY, Kim JH, Kim JH, Park MS, Bahk JY, Kim MO (2004) Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 363:29–32

    PubMed  CAS  Google Scholar 

  • London ED, Waller SB, Wamsley JK (1985) Autoradiographic localization of [3H] nicotine binding sites in the rat brain. Neurosci Lett 53:179–184

    PubMed  CAS  Google Scholar 

  • London ED, Connolly RJ, Szikszay M, Wamsley JK, Dam M (1988a) Effects of nicotine on local cerebral glucose-utilization in the rat. J Neurosci 8:3920–3928

    CAS  Google Scholar 

  • London ED, Dam M, Fanelli RJ (1988b) Nicotine enhances cerebral glucose utilization in central components of the rat visual system. Brain Res Bull 20:381–385

    CAS  Google Scholar 

  • London ED, Scheffel U, Kimes AS, Kellar KJ (1995) In vivo labeling of nicotinic acetylcholine receptors in brain with [3H]epibatidine. Eur J Pharmacol 278:R1–R2

    PubMed  CAS  Google Scholar 

  • Lukas RJ (1998) Neuronal nicotinic acetylcholine receptors. In: Barrantes FJ (ed) The nicotinic acetylcholine receptor: current views and future trends. R.G. Landes, Georgetown, pp 145–173

    Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    PubMed  CAS  Google Scholar 

  • Marenco T, Bernstein S, Cumming P, Clarke PBS (2000) Effects of nicotine and chlorisondamine on cerebral glucose utilization in immobilized and freely-moving rats. Br J Pharmacol 129: 147–155

    PubMed  CAS  Google Scholar 

  • Marenco S, Carson RE, Berman KF, Herscovitch P, Weinberger DR (2004) Nicotine-induced dopamine release in primates measured with [C-11]raclopride PET. Neuropsychopharmacology 29:259–268

    PubMed  CAS  Google Scholar 

  • Marien M, Brien J, Jhamandas K (1983) Regional release of [3H]dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Can J Physiol Pharmacol 61:43–60

    PubMed  CAS  Google Scholar 

  • McClernon FJ, Huettel SA, Rose JE (2005) Abstinence-induced changes in self-report craving correlate with event-related fMRI responses to smoking cues. Neuropsychopharmacology 301:940–1947

    Google Scholar 

  • Miller NS, Goldsmith RJ (2001) Craving for alcohol and drugs in animals and humans: biology and behavior. J Addict Dis 20:87–104

    PubMed  CAS  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    PubMed  Google Scholar 

  • Mukhin AG, Gundisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, Chambers J, Vaupel DB, King SL, Picciotto MR, Innis RB, London ED (2000) 5-Iodo-A-85380, an alpha 4 beta 2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 57:642–649

    PubMed  CAS  Google Scholar 

  • Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K (2000) Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. J Neurophysiol 83:1701–1709

    PubMed  CAS  Google Scholar 

  • Nakamura H, Tanaka A, Nomoto Y, Ueno Y, Nakayama Y (2000) Activation of fronto-limbic system in the human brain by cigarette smoking: evaluated by a CBF measurement. Keio J Med 49(Suppl 1):A122–A124

    PubMed  Google Scholar 

  • Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

    PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44

    PubMed  CAS  Google Scholar 

  • Pabreza LA, Dhawan S, Kellar KJ (1991) [3H]Cytisine binding to nicotinic cholinergic receptors in brain. Mol Pharmacol 39:9–12

    PubMed  CAS  Google Scholar 

  • Parrott AC (2003) Cigarette-derived nicotine is not a medicine. World J Biol Psychiatry 4:49–55

    PubMed  Google Scholar 

  • Parrott AC, Kaye FJ (1999) Daily uplifts, hassles, stresses and cognitive failures: in cigarette smokers, abstaining smokers, and non-smokers. Behav Pharmacol 10:639–646

    PubMed  CAS  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    PubMed  CAS  Google Scholar 

  • Paulson OB (2002) Blood-brain barrier, brain metabolism and cerebral blood flow. Eur Neuropsy-chopharmacol 12:495–501

    CAS  Google Scholar 

  • Pauly JR, Stitzel JA, Marks MJ, Collins AC (1989) An autoradiographic analysis of cholinergic receptors in mouse brain. Brain Res Bull 22:453–459

    PubMed  CAS  Google Scholar 

  • Pauly JR, Marks MJ, Robinson SF, van de Kamp JL, Collins AC (1996) Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing alpha 4 or beta 2 mRNA levels. J Pharmacol Exp Ther 278:361–369

    PubMed  CAS  Google Scholar 

  • Perkins K, Sayette M, Conklin C, Caggiula A (2003) Placebo effects of tobacco smoking and other nicotine intake. Nicotine Tob Res 5:695–709

    PubMed  CAS  Google Scholar 

  • Perry DC, Kellar KJ (1995) [3H]Epibatidine labels nicotinic receptors in rat brain: an autoradi-ographic study. J Pharmacol Exp Ther 285:1030–1034

    Google Scholar 

  • Pessoa L, Kastner S, Ungerleider LG (2003) Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci 23:3990–3998

    PubMed  CAS  Google Scholar 

  • Peterson BS, Skudlarski P, Gatenby JC, Zhang HP, Anderson AW, Gore JC (1999) An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 45:1237–1258

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Corrigall WA (2002) Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 22:3338–3341

    PubMed  CAS  Google Scholar 

  • Pomper MG, Phillips, E, Fan, H, McCarthy, DJ, Keith, RA, Gordon, JC, Scheffel, U, Dannals, RF, Musachio, JL. (2005) Synthesis and biodistribution of radiolabeled alpha 7 nicotinic acetyl-choline receptor ligands. J Nucl Med 46:326–334

    PubMed  CAS  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257

    PubMed  CAS  Google Scholar 

  • Powell J, Dawkins L, Davis RE (2002) Smoking, reward responsiveness, and response inhibition: tests of an incentive motivational model. Biol Psychiatry 51:151–163

    PubMed  Google Scholar 

  • Pritchard WS, Robinson JH, Guy TD (1992) Enhancement of continuous performance task reaction-time by smoking in nondeprived smokers. Psychopharmacology 108:437–442

    PubMed  CAS  Google Scholar 

  • Rauch SL, Shin LM, Dougherty DD, Alpert NM, Orr SP, Lasko M, Macklin ML, Fischman AJ, Pitman RK (1999) Neural activation during sexual and competitive arousal in healthy men. Psychiatry Res Neuroimaging 91:1–10

    CAS  Google Scholar 

  • Rees G, Lavie N (2001) What can functional imaging reveal about the role of attention in visual awareness? Neuropsychologia 39:1343–1353

    PubMed  CAS  Google Scholar 

  • Rogers RL, Meyer JS, Shaw TG, Mortel KF, Hardenberg JP, Zaid RR (1983) Cigarette-smoking decreases cerebral blood-flow suggesting increased risk for stroke. JAMA 250:2796–2800

    PubMed  CAS  Google Scholar 

  • Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate or-bitofrontal cortex. J Neurosci 14:5437–5452

    PubMed  CAS  Google Scholar 

  • Rolls ET, Critchley HD, Browning A, Hernadi I (1998) The neurophysiology of taste and olfaction in primates, and umami flavor. Ann N Y Acad Sci 855:426–437

    PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Mathew RJ, London ED, Hawk TC, Turkington TG, Coleman RE (2003) PET studies of the influences of nicotine on neural systems in cigarette smokers. Am J Psychiatry 160:323–333

    PubMed  Google Scholar 

  • Rose JE, Behm FM, Salley AN, Bates JE, Coleman RE, Hawk TC (2007) Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology 32:2441–2452

    PubMed  CAS  Google Scholar 

  • Rourke SB, Dupont RM, Grant I, Lehr PP, Lamoureux G, Halpern S, Yeung DW (1997) Reduction in cortical IMP-SPET tracer uptake with recent cigarette consumption in a young group of healthy males. San Diego HIV Neurobehavioral Research Center. Eur J Nucl Med 24:422–427

    PubMed  CAS  Google Scholar 

  • Rowell PP, Carr LA, Garner AC (1987) Stimulation of [3H]dopamine release by nicotine in rat nucleus accumbens. J Neurochem 49:1449–1454

    PubMed  CAS  Google Scholar 

  • Rusted JM, Caulfield D, King L, Goode A (2000) Moving out of the laboratory: does nicotine improve everyday attention? Behav Pharmacol 11:621–629

    PubMed  CAS  Google Scholar 

  • Ryan RE, Ross SA, Drago J, Loiacono RE (2001) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha 4 nicotinic receptor subunit knockout mice. Br J Pharmacol 132:1650–1656

    PubMed  CAS  Google Scholar 

  • Sakurai Y, Takano Y, Kohjimoto Y, Honda K, Kamiya HO (1982) Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res 242:99–106

    PubMed  CAS  Google Scholar 

  • Salokangas RK, Vilkman H, Ilonen T, Taiminen T, Bergman J, Haaparanta M, Solin O, Alanen A, Syvalahti E, Hietala J (2000) High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry 157:632–634

    PubMed  CAS  Google Scholar 

  • Schilstrom B, Fagerquist MV, Zhang X, Hertel P, Panagis G, Nomikos GG, Svensson TH (2000) Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 38:375–383

    PubMed  CAS  Google Scholar 

  • Schuh KJ, Stitzer ML (1995) Desire to smoke during spaced smoking intervals. Psychopharmacology 120:289–295

    PubMed  CAS  Google Scholar 

  • Sherman SM (2001) Thalamic relay functions. Prog Brain Res 134:51–69

    PubMed  CAS  Google Scholar 

  • Shiffman S, Paty JA, Gnys M, Elash C, Kassel JD (1995) Nicotine withdrawal in chippers and regular smokers – subjective and cognitive effects. Health Psychol 14:301–309

    PubMed  CAS  Google Scholar 

  • Shoaib M, Schindler CW, Goldberg SR, Pauly JR (1997) Behavioural and biochemical adaptations to nicotine in rats: influence of MK801, an NMDA receptor antagonist. Psychopharmacology 134:121–130

    PubMed  CAS  Google Scholar 

  • Shoaib M, Lowe AS, Williams SCR (2004) Imaging localised dynamic changes in the nucleus accumbens following nicotine withdrawal in rats. Neuroimage 22:847–854

    PubMed  Google Scholar 

  • Sihver W, Langstrom B, Nordberg A (2000) Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. Acta Neurol Scand 102:27–33

    Google Scholar 

  • Sillito AM, Jones HE (2002) Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond Ser B Biol Sci 357:1739–1752

    Google Scholar 

  • Smith EE, Jonides J (1999) Neuroscience – Storage and executive processes in the frontal lobes. Science 283:1657–1661

    PubMed  CAS  Google Scholar 

  • Sommer MA (2003) The role of the thalamus in motor control. Curr Opin Neurobiol 13:663–670

    PubMed  CAS  Google Scholar 

  • Staley JK, Krishnan-Sarin S, Zoghbi S, Tamagnan G, Fujita M, Seibyl JP, Maciejewski PK, O'Malley S, Innis RB (2001) Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 41:275–284

    PubMed  CAS  Google Scholar 

  • Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley S, van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 34:8707–8714

    Google Scholar 

  • Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF, Henningfield JE, London ED (2003a) Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsychopharmacology 28:765–772

    CAS  Google Scholar 

  • Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF, Henningfield JE, London ED (2003b) Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsychopharmacology 28:765–772

    CAS  Google Scholar 

  • Stein E, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao S, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    PubMed  CAS  Google Scholar 

  • Sziraki I, Lipovac MN, Hashim A, Sershen H, Allen D, Cooper T, Czobor P, Lajtha A (2001) Differences in nicotine-induced dopamine release and nicotine pharmacokinetics between Lewis and Fischer 344 rats. Neurochem Res 26:609–617

    PubMed  CAS  Google Scholar 

  • Terborg C, Birkner T, Schack B, Witte OW (2002) Acute effects of cigarette smoking on cerebral oxygenation and hemodynamics: a combined study with near-infrared spectroscopy and transcranial Doppler sonography. J Neurol Sci 205:71–75

    PubMed  Google Scholar 

  • Thompson JC, Wilby G, Stough C (2002) The effects of transdermal nicotine on inspection time. Hum Psychopharmacol 17:157–161

    PubMed  CAS  Google Scholar 

  • Tsukada H, Miyasato K, Kakiuchi T, Nishiyama S, Harada N, Domino EF (2002) Comparative effects of methamphetamine and nicotine on the striatal [C-11]raclopride binding in unanes-thetized monkeys. Synapse 45:207–212

    PubMed  CAS  Google Scholar 

  • Valette H, Bottlaender M, Dolle F, Guenther I, Coulon C, Hinnen F, Fuseau C, Ottaviani M, Crouzel C (1998) Characterization of the nicotinic ligand 2-[F-18]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine in vivo. Life Sci 64:L93–L97

    Google Scholar 

  • Valette H, Bottlaender M, Dolle F, Guenther I, Fuseau C, Coulon C, Ottaviani M, Crouzel C (1999) Imaging central nicotinic acetylcholine receptors in baboons with [F-18]fluoro-A-85380. J Nucl Med 40:1374–1380

    PubMed  CAS  Google Scholar 

  • Valette H, Bottlaender M, Dolle F, Coulon C, Ottaviani M, Syrota A (2003) Long-lasting occupancy of central nicotinic acetylcholine receptors after smoking: a PET study in monkeys. J Neurochem 84:105–111

    PubMed  CAS  Google Scholar 

  • Villemagne V, Horti A, Scheffel U, Ravert H, Finley P, Clough DJ, London E, Wagner H, Dannals RF (1997) Imaging nicotinic acetylcholine receptors with fluorine-18-FPH, an epi-batidine analog. J Nucl Med 38:1737–1741

    PubMed  CAS  Google Scholar 

  • Westfall TC, Grant H, Perry H (1983) Release of dopamine and 5-hydroxytryptamine from rat stri-atal slices following activation of nicotinic cholinergic receptors. Gen Pharmacol 14: 321–325

    PubMed  CAS  Google Scholar 

  • Wilson SJ, Sayette MA, Fiez JA (2004) Prefrontal responses to drug cues: a neurocognitive analysis. Nat Neurosci 7:211–214

    PubMed  Google Scholar 

  • Yamamoto Y, Nishiyama Y, Monden T, Satoh K, Ohkawa M (2003) A study of the acute effect of smoking on cerebral blood flow using 99mTc-ECD SPET. Eur J Nucl Med Mol Imaging 30:612–614

    PubMed  Google Scholar 

  • Yates SL, Bencherif M, Fluhler EN, Lippiello PM (1995) Up-regulation of nicotinic acetylcholine receptors following chronic exposure of rats to mainstream cigarette smoke or alpha 4 beta 2 receptors to nicotine. Biochem Pharmacol 50:2001–2008

    PubMed  CAS  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation. Pharmacol Biochem Behav 57:915–921

    PubMed  CAS  Google Scholar 

  • Yoshida M, Yokoo H, Tanaka T, Mizoguchi K, Emoto H, Ishii H, Tanaka M (1993) Facilitatory modulation of mesolimbic dopamine neuronal-activity by a mu-opioid agonist and nicotine as examined with in-vivo microdialysis. Brain Res 624:277–280

    PubMed  CAS  Google Scholar 

  • Zhang X, Tian JY, Svensson AL, Gong ZH, Meyerson B, Nordberg A (2002) Chronic treatments with tacrine and (−)-nicotine induce different changes of nicotinic and muscarinic acetylcholine receptors in the brain of aged rat. J Neural Transm 109:377–392

    PubMed  CAS  Google Scholar 

  • Zubieta J, Lombardi U, Minoshima S, Guthrie S, Ni L, Ohl LE, Koeppe RA, Domino EF (2001) Regional cerebral blood flow effects of nicotine in overnight abstinent smokers. Biol Psychiatry 49:906–913

    PubMed  CAS  Google Scholar 

  • Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S, Domino EF (2005) Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence. Am J Psychiatry 162:567–577

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, A., Brody, A.L. (2009). In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco. In: Henningfield, J.E., London, E.D., Pogun, S. (eds) Nicotine Psychopharmacology. Handbook of Experimental Pharmacology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69248-5_6

Download citation

Publish with us

Policies and ethics